Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 10: 1254699, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028540

RESUMO

Introduction: Pediatric brain tumours (PBT) are one of the most common malignancies during childhood, with variable severity according to the location and histological type. Certain types of gliomas, such a glioblastoma and diffuse intrinsic pontine glioma (DIPG), have a much higher mortality than ependymoma and medulloblastoma. Early detection of PBT is essential for diagnosis and therapeutic interventions. Liquid biopsies have been demonstrated using cerebrospinal fluid (CSF), mostly restricted to cell free DNA, which display limitations of quantity and integrity. In this pilot study, we sought to demonstrate the detectability and robustness of cell free histones in the CSF. Methods: We collected CSF samples from a pilot cohort of 8 children with brain tumours including DIPG, medulloblastoma, glioblastoma, ependymoma and others. As controls, we collected CSF samples from nine children with unrelated blood malignancies and without brain tumours. We applied a multichannel flow imaging approach on ImageStream(X) to image indiviual histone or histone complexes on different channels. Results: Single histones (H2A, macroH2A1.1, macroH2A1.2 H2B, H3, H4 and histone H3 bearing the H3K27M mutation), and histone complexes are specifically detectable in the CSF of PBT patients. H2A and its variants macroH2A1.1/macroH2A1/2 displayed the strongest signal and abundance, together with disease associated H3K27M. In contrast, mostly H4 is detectable in the CSF of pediatric patients with blood malignancies. Discussion: In conclusion, free histones and histone complexes are detectable with a strong signal in the CSF of children affected by brain tumours, using ImageStream(X) technology and may provide additive diagnostic and predictive information.

3.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674455

RESUMO

Liquid biopsies have emerged as a minimally invasive cancer detection and monitoring method, which could identify cancer-related alterations in nucleosome or histone levels and modifications in blood, saliva, and urine. Histones, the core component of the nucleosome, are essential for chromatin compaction and gene expression modulation. Increasing evidence suggests that circulating histones and histone complexes, originating from cell death or immune cell activation, could act as promising biomarkers for cancer detection and management. In this review, we provide an overview of circulating histones as a powerful liquid biopsy approach and methods for their detection. We highlight current knowledge on circulating histones in hematologic malignancies and solid cancer, with a focus on their role in cancer dissemination, monitoring, and tumorigenesis. Last, we describe recently developed strategies to identify cancer tissue-of-origin in blood plasma based on nucleosome positioning, inferred from nucleosomal DNA fragmentation footprint, which is independent of the genetic landscape.


Assuntos
Histonas , Neoplasias , Humanos , Histonas/metabolismo , Nucleossomos , Cromatina/genética , Neoplasias/diagnóstico , Neoplasias/genética
4.
J Clin Transl Hepatol ; 11(7): 1520-1541, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38161500

RESUMO

Liver diseases are a major burden worldwide, the scope of which is expected to further grow in the upcoming years. Clinically relevant liver dysfunction-related blood markers such as alanine aminotransferase and aspartate aminotransferase have limited accuracy. Nowadays, liver biopsy remains the gold standard for several liver-related pathologies, posing a risk of complication due to its invasive nature. Liquid biopsy is a minimally invasive approach, which has shown substantial potential in the diagnosis, prognosis, and monitoring of liver diseases by detecting disease-associated particles such as proteins and RNA molecules in biological fluids. Histones are the core components of the nucleosomes, regulating essential cellular processes, including gene expression and DNA repair. Following cell death or activation of immune cells, histones are released in the extracellular space and can be detected in circulation. Histones are stable in circulation, have a long half-life, and retain their post-translational modifications. Here, we provide an overview of the current research on histone-mediated liquid biopsy methods for liver diseases, with a focus on the most common detection methods.

5.
Mol Ther Oncolytics ; 5: 41-61, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28480327

RESUMO

Oncolytic vaccinia virus (VACV) therapy is an alternative cancer treatment modality that mediates targeted tumor destruction through a tumor-selective replication and an induction of anti-tumor immunity. We developed a humanized tumor mouse model with subcutaneous human tumors to analyze the interactions of VACV with the developing tumors and human immune system. A successful systemic reconstitution with human immune cells including functional T cells as well as development of tumors infiltrated with human T and natural killer (NK) cells was observed. We also demonstrated successful in vivo colonization of such tumors with systemically administered VACVs. Further, a new recombinant GLV-1h376 VACV encoding for a secreted human CTLA4-blocking single-chain antibody (CTLA4 scAb) was tested. Surprisingly, although proving CTLA4 scAb's in vitro binding ability and functionality in cell culture, beside the significant increase of CD56bright NK cell subset, GLV-1h376 was not able to increase cytotoxic T or overall NK cell levels at the tumor site. Importantly, the virus-encoded ß-glucuronidase as a measure of viral titer and CTLA4 scAb amount was demonstrated. Therefore, studies in our "patient-like" humanized tumor mouse model allow the exploration of newly designed therapy strategies considering the complex relationships between the developing tumor, the oncolytic virus, and the human immune system.

6.
PLoS One ; 10(9): e0137573, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26348361

RESUMO

Blood tests are necessary, easy-to-perform and low-cost alternatives for monitoring of oncolytic virotherapy and other biological therapies in translational research. Here we assessed three candidate proteins with the potential to be used as biomarkers in biological fluids: two glucuronidases from E. coli (GusA) and Staphylococcus sp. RLH1 (GusPlus), and the luciferase from Gaussia princeps (GLuc). The three genes encoding these proteins were inserted individually into vaccinia virus GLV-1h68 genome under the control of an identical promoter. The three resulting recombinant viruses were used to infect tumor cells in cultures and human tumor xenografts in nude mice. In contrast to the actively secreted GLuc, the cytoplasmic glucuronidases GusA and GusPlus were released into the supernatants only as a result of virus-mediated oncolysis. GusPlus resulted in the most sensitive detection of enzyme activity under controlled assay conditions in samples containing as little as 1 pg/ml of GusPlus, followed by GusA (25 pg/ml) and GLuc (≥375 pg/ml). Unexpectedly, even though GusA had a lower specific activity compared to GusPlus, the substrate conversion in the serum of tumor-bearing mice injected with the GusA-encoding virus strains was substantially higher than that of GusPlus. This was attributed to a 3.2 fold and 16.2 fold longer half-life of GusA in the blood stream compared to GusPlus and GLuc respectively, thus a more sensitive monitor of virus replication than the other two enzymes. Due to the good correlation between enzymatic activity of expressed marker gene and virus titer, we conclude that the amount of the biomarker protein in the body fluid semiquantitatively represents the amount of virus in the infected tumors which was confirmed by low light imaging. We found GusA to be the most reliable biomarker for monitoring oncolytic virotherapy among the three tested markers.


Assuntos
Biomarcadores Tumorais/genética , Glucuronidase/genética , Luciferases/genética , Neoplasias/terapia , Terapia Viral Oncolítica , Animais , Linhagem Celular Tumoral , Escherichia coli/enzimologia , Glucuronidase/biossíntese , Humanos , Luciferases/biossíntese , Camundongos , Neoplasias/genética , Neoplasias/virologia , Vírus Oncolíticos/genética , Staphylococcus/enzimologia , Vaccinia virus/genética , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Methods Mol Biol ; 1317: 225-37, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26072410

RESUMO

Herein we describe the use of the vaccinia virus strain GLV-1h68 as a theragnostic agent in cancer models. To date, GLV-1h68 has been used successfully in more than 50 xenograft tumor models. The recombinant vaccinia virus strain has been equipped with heterologous expression cassettes for a luciferase-fluorescent protein fusion gene, bacterial beta-galactosidase, as well as a bacterial glucuronidase. The methods to investigate and monitor GLV-1h68 mediated virotherapy, including optical imaging and biomarker analysis, will be presented in detail.


Assuntos
Terapia Viral Oncolítica/métodos , Vaccinia virus/fisiologia , Animais , Linhagem Celular , Ensaios Enzimáticos , Glucuronidase/metabolismo , Humanos , Luciferases/metabolismo , Camundongos Nus , Imagem Óptica , Vaccinia virus/genética , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA