Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 323: 124597, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33387710

RESUMO

Biodiesel production using microbial oil derived from food waste discarded by the hospilatity sector could provide a sustainable replacement for diesel fuel. Discarded potato peels were used in solid-state fermentations of Aspergillus awamori for the production of glucoamylase (30 U/g) and protease (50 U/g). Hospitality food waste hydrolysis led to 98% (w/w) starch to glucose conversion yields. Crude hydrolyzates were used in shake flask fermentations with the oleaginous yeast Rhodosporidium toruloides Y-27012 leading to 32.9 g/L total dry weight (TDW) with 36.4% (w/w) intracellular lipid content. Fed-bath bioreactor cultures resulted in TDW of 53.9 g/L and lipid concentration of 26.7 g/L. Principal component analysis showed a fatty acid profile similar to soybean oil and solid food waste oil. Microbial oil was transesterified into biodiesel with satisfactory performance considering the European standard EN 14214. This work demonstrated that valorization of food waste for biodiesel production is feasible.


Assuntos
Biocombustíveis , Eliminação de Resíduos , Aspergillus , Alimentos , Rhodotorula
2.
Food Technol Biotechnol ; 57(1): 29-38, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31316274

RESUMO

The side streams derived from the palm oil production process, namely palm kernel cake, palm pressed fibre, palm kernel shells and empty fruit bunches, were evaluated as sources of phenolic compounds. Among these streams, kernel cake had the highest total phenolic content (in mg of gallic acid equivalents (GAE) per g of dry sample) with a value of 5.19, whereas the empty fruit bunches had the lowest value (1.79). The extraction time and liquid-to-solid ratio were investigated to optimize the phenolic extraction. Kernel cake exhibited the highest total phenolic content (5.35 mg/g) with a liquid-to-solid ratio of 40:1 during 20 min of extraction. The main phenolic compounds of the extracts deriving from all byproduct streams were also identified and quantified with HPLC-DAD. Pyrogallol, 4-hydroxybenzoic acid, gallic acid and ferulic acid were the main compounds found in kernel cake extracts. Empty fruit bunch and pressed fibre extracts were also rich in 4-hydroxybenzoic acid, while pyrogallol was the predominant compound in kernel shell extracts. All extracts showed antioxidant activity as it was indicated from the results of DPPH analysis and subsequently tested in sunflower oil aiming to prolong its shelf life. The addition of 0.8% kernel cake extract increased the induction time of sunflower oil more than 50%. According to the results obtained in this study, kernel cake extracts could be considered as a value-added co-product with a potential application as antioxidants in the food industry.

3.
ACS Omega ; 3(8): 10365-10373, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459164

RESUMO

Citrus juices from whole oranges and grapefruits (discarded from open market) and aqueous extracts from citrus processing waste (mainly peels) were used for bacterial cellulose production by Komagataeibacter sucrofermentans DSM 15973. Grapefruit and orange juices yielded higher bacterial cellulose concentration (6.7 and 6.1 g/L, respectively) than lemon, grapefruit, and orange peels aqueous extracts (5.2, 5.0, and 2.9 g/L, respectively). Compared to the cellulosic fraction isolated from depectinated orange peel, bacterial cellulose produced from orange peel aqueous extract presented improved water-holding capacity (26.5 g water/g, 3-fold higher), degree of polymerization (up to 6-fold higher), and crystallinity index (35-86% depending on the method used). The presence of absorption bands at 3240 and 3270 cm-1 in the IR spectrum of bacterial cellulose indicated that the bacterial strain K. sucrofermentans synthesizes both Iα and Iß cellulose types, whereas the signals in the 13C NMR spectrum demonstrated that Iα cellulose is the dominant type.

4.
Appl Biochem Biotechnol ; 181(4): 1241-1256, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27787766

RESUMO

This study demonstrates the production of a generic nutrient-rich feedstock using by-product streams from palm oil production that could be used as a substitute for commercial fermentation supplements. Solid-state fermentations of palm kernel cake (PKC) and palm-pressed fiber (PPF) were conducted in tray bioreactors and a rotating drum bioreactor by the fungal strain Aspergillus oryzae for the production of crude enzymes. The production of protease was optimized (319.3 U/g) at an initial moisture content of 55 %, when PKC was used as the sole substrate. The highest free amino nitrogen (FAN) production (5.6 mg/g) obtained via PKC hydrolysis using the crude enzymes produced via solid-state fermentation was achieved at 50 °C. Three initial PKC concentrations (48.7, 73.7, and 98.7 g/L) were tested in hydrolysis experiments, leading to total Kjeldahl nitrogen to FAN conversion yields up to 27.9 %. Sequential solid-state fermentation followed by hydrolysis was carried out in the same rotating drum bioreactor, leading to the production of 136.7 U/g of protease activity during fermentation and 196.5 mg/L of FAN during hydrolysis. Microbial oil production was successfully achieved with the oleaginous yeast strain Lipomyces starkeyi DSM 70296 cultivated on the produced PKC hydrolysate mixed with commercial carbon sources, including glucose, xylose, mannose, galactose, and arabinose.


Assuntos
Biocombustíveis/microbiologia , Reatores Biológicos/microbiologia , Fermentação , Óleos de Plantas/química , Aspergillus oryzae/metabolismo , Biotecnologia , Carbono/metabolismo , Hidrólise , Óleo de Palmeira , Peptídeo Hidrolases/metabolismo
5.
Carbohydr Polym ; 150: 5-12, 2016 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-27312607

RESUMO

Ιn the present study we investigated ultrasounds as a pretreatment process for bacterial cellulose (BC) aqueous suspensions. BC suspensions (0.1-1% wt) subjected to an ultrasonic treatment for different time intervals. Untreated BC presented an extensively entangled fibril network. When a sonication time of 1min was applied BC fibrils appeared less bundled and dropped in width from 110nm to 60nm. For a longer treatment (3-5min) the width of the fibrils increased again to 100nm attributed to an entanglement of their structure. The water holding capacity (WHC) and ζ-potnential of the suspensions was proportional to the sonication time. Their viscosity and stability were also affected; an increase could be seen at short treatments, while a decrease was obvious at longer ones. Concluding, a long ultrasonic irradiation led to similar BC characteristics as the untreated, but a short treatment may be a pre-handling method for improving BC properties.


Assuntos
Acetobacteraceae/química , Celulose/química , Sonicação , Elasticidade , Reologia , Viscosidade , Água/química
6.
Int J Mol Sci ; 16(7): 14832-49, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26140376

RESUMO

The utilization of fermentation media derived from waste and by-product streams from biodiesel and confectionery industries could lead to highly efficient production of bacterial cellulose. Batch fermentations with the bacterial strain Komagataeibacter sucrofermentans DSM (Deutsche Sammlung von Mikroorganismen) 15973 were initially carried out in synthetic media using commercial sugars and crude glycerol. The highest bacterial cellulose concentration was achieved when crude glycerol (3.2 g/L) and commercial sucrose (4.9 g/L) were used. The combination of crude glycerol and sunflower meal hydrolysates as the sole fermentation media resulted in bacterial cellulose production of 13.3 g/L. Similar results (13 g/L) were obtained when flour-rich hydrolysates produced from confectionery industry waste streams were used. The properties of bacterial celluloses developed when different fermentation media were used showed water holding capacities of 102-138 g · water/g · dry bacterial cellulose, viscosities of 4.7-9.3 dL/g, degree of polymerization of 1889.1-2672.8, stress at break of 72.3-139.5 MPa and Young's modulus of 0.97-1.64 GPa. This study demonstrated that by-product streams from the biodiesel industry and waste streams from confectionery industries could be used as the sole sources of nutrients for the production of bacterial cellulose with similar properties as those produced with commercial sources of nutrients.


Assuntos
Acetobacter/metabolismo , Biodegradação Ambiental , Biotransformação , Celulose/metabolismo , Resíduos Industriais , Acetobacter/crescimento & desenvolvimento , Celulose/química , Módulo de Elasticidade , Fermentação , Glicerol/metabolismo , Sacarose/metabolismo , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA