Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(1): 1936-1944, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38222617

RESUMO

In drug delivery systems, it is crucial to develop a drug carrier capable of regulating both the drug-release rate and the drug-release ratio. This study proposes a method for controlling the drug-release ratio/rate using doxorubicin-loaded natural composite films composed of polysaccharides (cellulose, chitin, chitosan, or cellulose nanocrystal) and mineral substances (MMT: montmorillonite). We succeeded in controlling the doxorubicin release ratio from 25 to 88% depending on the natural polysaccharide. Likewise, the reduction rate differed depending on the type of natural polysaccharide, whereas the reduction in release was achieved by mixing MMT. Cellulose had the largest reduction in the drug release ratio, approximately 30%, and cellulose nanocrystals showed little change. Furthermore, we conducted a skin permeation test on the natural polysaccharide film with the highest release rate to confirm its transdermal permeability potential. The polysaccharide doxorubicin-loaded film sustainably released doxorubicin for 2 days, which indicated the potential of a carrier for DDS applications.

2.
Langmuir ; 39(25): 8908-8915, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37317054

RESUMO

Protein-based drug carriers are ideal drug-delivery platforms because of their biocompatibility, biodegradability, and low toxicity. Many types and shapes of protein-based platforms, including nanoparticles, hydrogels, films, and minipellets, have been prepared to deliver drug molecules. In this study, protein films containing the desired amounts of doxorubicin (DOX) as cancer drugs were developed using a simple mixing method. The release ratio and rate of DOXs were dependent on the surfactant concentration. The drug release ratio was controlled within the range of 20-90% depending on the amount of the surfactant used. The protein film surface was analyzed using a microscope before and after drug release, and the relationship between the degree of film swelling and the drug release ratio was discussed. Moreover, the effects of cationic surfactants on the protein film were investigated. Non-toxic conditions of the protein films were confirmed in normal cells, while the toxicity of the drug-encapsulated protein film was confirmed in cancer cells. Remarkably, it was observed that the drug-encapsulated protein film could eliminate 10-70% of cancer cells, with the extent of efficacy varying based on the surfactant amount.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Dodecilsulfato de Sódio , Preparações de Ação Retardada/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Portadores de Fármacos/toxicidade , Doxorrubicina/farmacologia , Proteínas , Liberação Controlada de Fármacos , Tensoativos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...