Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 143(2): 211-8, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26657773

RESUMO

Runt-related transcription factor 2 (Runx2) is an essential transcriptional regulator of osteoblast differentiation and its haploinsufficiency leads to cleidocranial dysplasia because of a defect in osteoblast differentiation during bone formation through intramembranous ossification. The cellular origin and essential period for Runx2 function during osteoblast differentiation in intramembranous ossification remain poorly understood. Paired related homeobox 1 (Prx1) is expressed in craniofacial mesenchyme, and Runx2 deficiency in cells of the Prx1 lineage (in mice referred to here as Runx2prx1 (-/-)) resulted in defective intramembranous ossification. Runx2 was heterogeneously expressed in Prx1-GFP(+) cells located at the intrasutural mesenchyme in the calvaria of transgenic mice expressing GFP under the control of the Prx1 promoter. Double-positive cells for Prx1-GFP and stem cell antigen-1 (Sca1) (Prx1(+)Sca1(+) cells) in the calvaria expressed Runx2 at lower levels and were more homogeneous and primitive than Prx1(+)Sca1(-) cells. Osterix (Osx) is another transcriptional determinant of osteoblast lineages expressed by osteoblast precursors; Osx is highly expressed by Prx1(-)Runx2(+) cells at the osteogenic front and on the surface of mineralized bone in the calvaria. Runx2 deficiency in cells of the Osx lineage (in mice referred to here as Runx2osx (-/-)) resulted in severe defects in intramembranous ossification. These findings indicate that the essential period of Runx2 function in intramembranous ossification begins at the Prx1(+)Sca1(+) mesenchymal stem cell stage and ends at the Osx(+)Prx1(-)Sca1(-) osteoblast precursor stage.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Ataxina-1/genética , Ataxina-1/metabolismo , Diferenciação Celular/fisiologia , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Knockout , Camundongos Mutantes , Nestina/genética , Nestina/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese/genética , Osteogênese/fisiologia , Crânio/citologia , Crânio/metabolismo , Fator de Transcrição Sp7 , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
J Bone Miner Res ; 28(10): 2064-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23553905

RESUMO

Global gene deletion studies in mice and humans have established the pivotal role of runt related transcription factor-2 (Runx2) in both intramembranous and endochondral ossification processes during skeletogenesis. In this study, we for the first time generated mice carrying a conditional Runx2 allele with exon 4, which encodes the Runt domain, flanked by loxP sites. These mice were crossed with α1(I)-collagen-Cre or α1(II)-collagen-Cre transgenic mice to obtain osteoblast-specific or chondrocyte-specific Runx2 deficient mice, respectively. As seen in Runx2(-/-) mice, perinatal lethality was observed in α1(II)-Cre;Runx2(flox/flox) mice, but this was not the case in animals in which α1(I)-collagen-Cre was used to delete Runx2. When using double-staining with Alizarin red for mineralized matrix and Alcian blue for cartilaginous matrix, we observed previously that mineralization was totally absent at embryonic day 15.5 (E15.5) throughout the body in Runx2(-/-) mice, but was found in areas undergoing intramembranous ossification such as skull and clavicles in α1(II)-Cre;Runx2(flox/flox) mice. In newborn α1(II)-Cre;Runx2(flox/flox) mice, mineralization impairment was restricted to skeletal areas undergoing endochondral ossification including long bones and vertebrae. In contrast, no apparent skeletal abnormalities were seen in mutant embryo, newborn, and 3-week-old to 6-week old-mice in which Runx2 had been deleted with the α1(I)-collagen-Cre driver. These results suggest that Runx2 is absolutely required for endochondral ossification during embryonic and postnatal skeletogenesis, but that disrupting its expression in already committed osteoblasts as achieved here with the α1(I)-collagen-Cre driver does not affect overtly intramembranous and endochondral ossification. The Runx2 floxed allele established here is undoubtedly useful for investigating the role of Runx2 in particular cells.


Assuntos
Desenvolvimento Ósseo , Condrócitos/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/deficiência , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Osteoblastos/metabolismo , Animais , Feminino , Integrases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...