Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ASAIO J ; 49(6): 701-7, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14655738

RESUMO

In this study, the authors used diamond-like carbon film to coat the ellipsoidal diaphragm (polyurethane elastomer) of artificial hearts. The purpose of such coatings is to prevent the penetration of hydraulic silicone oil and blood through the diaphragm. To attach diamond-like carbon film uniformly on the diaphragm, the authors developed a special electrode. In estimating the uniformity of the diamond-like carbon film, the thickness was measured using a scanning electron microscope, and the characteristics of the diamond-like carbon film was investigated using infrared spectroscopy, Ar-laser Raman spectrophotometer, and x-ray photoelectron spectrometer. Also, to estimate the penetration of silicone oil through the diaphragm, in vitro testing was operated by alternating the pressure of silicone oil for 20 days. The authors were able to successfully attach uniform deposition of diamond-like carbon film on the ellipsoidal diaphragm. In this in vitro test, diamond-like carbon film was proven to have good stability. The amount of silicone oil penetration was improved by one-third using the diamond-like carbon film coating compared with an uncoated diaphragm. It is expected that through the use of the diamond-like carbon film, the dynamic compatibility of an artificial heart diaphragm will increase.


Assuntos
Carbono , Materiais Revestidos Biocompatíveis , Diamante , Coração Artificial , Membranas Artificiais , Difusão , Desenho de Equipamento , Humanos , Técnicas In Vitro , Óleos , Fluxo Pulsátil , Silício , Espectrofotometria Infravermelho , Propriedades de Superfície
2.
ASAIO J ; 49(3): 243-9, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12790371

RESUMO

Electrohydraulic total artificial heart (EHTAH) and electrohydraulic ventricular assist device (EHVAD) systems have been developed in our institute. The EHTAH system comprises a pumping unit consisting of blood pumps and an actuator, as well as an electronic unit consisting of an internal controller, internal and external batteries, and transcutaneous energy transfer (TET) and optical telemetry (TOT) subunits. The actuator, placed outside the pericardial space, reciprocates and delivers hydraulic silicone oil to the alternate blood pumps through a pair of flexible oil conduits. The pumping unit with an external controller was implanted in 10 calves as small as 55 kg. Two animals survived for more than 12 weeks in a good general condition. The assumed cardiac output ranged between 6 and 10 L/min, the power consumption was 12-18 W, and the energy efficiency was estimated to be 9-11%. Initial implantation of subtotal system including electronic units was further conducted in another calf weighing 73 kg. It survived for 3 days with a completely tether free system. The EHVAD system is developed by using the left blood pump and the actuator of the EHTAH, which were packaged in a compact metal casing with a compliance chamber. In vitro testing demonstrated maximum output more than 9 L/min and more than 13% maximum efficiency. The initial animal testing lasted for 25 days. These results indicate that our EHTAH and EHVAD have the potential to be totally implantable systems.


Assuntos
Coração Artificial , Animais , Débito Cardíaco/fisiologia , Bovinos , Desenho de Equipamento , Coração Artificial/efeitos adversos , Tromboembolia/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA