Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Invest ; 71(1.2): 121-128, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38735707

RESUMO

OBJECTIVES: Partially hydrolyzed guar gum (PHGG) is a soluble dietary fiber;in addition to improving bowel movements, it maintains intestinal health by producing short-chain fatty acids. However, majority of clinical studies on PHGG have been concluded within a month and excluded usual drug therapy. Hence, this study aimed to determine the effects of long-term consumption of PHGG, in combination with drug therapy, on gut bacteria ratios, laboratory values for inflammatory response, and fecal characteristics. METHODS AND RESULTS: The study was performed in patients with irritable bowel syndrome (IBS), Crohn's disease (CD), and ulcerative colitis (UC), by the administration of PHGG for six months while they continued their usual treatment. PHGG treatment caused significant changes in patients with IBS, including an increase in the abundance of short-chain fatty acid-producing bacteria, a significant decrease in Bacteroides abundance, and normalization of the Bristol scale of stool. In patients with UC, non-significant normalization of soft stools and decrease in fecal calprotectin were observed. Adverse events were not observed in any of the groups. CONCLUSION: Thus, it would be beneficial to include PHGG in the usual drug therapies of patients with IBS. J. Med. Invest. 71 : 121-128, February, 2024.


Assuntos
Fibras na Dieta , Galactanos , Microbioma Gastrointestinal , Síndrome do Intestino Irritável , Mananas , Gomas Vegetais , Humanos , Microbioma Gastrointestinal/efeitos dos fármacos , Síndrome do Intestino Irritável/tratamento farmacológico , Síndrome do Intestino Irritável/microbiologia , Masculino , Feminino , Fibras na Dieta/administração & dosagem , Adulto , Pessoa de Meia-Idade , Mananas/administração & dosagem , Gomas Vegetais/administração & dosagem , Galactanos/administração & dosagem , Doenças Inflamatórias Intestinais/tratamento farmacológico , Fezes/microbiologia , Fezes/química , Ácidos Graxos Voláteis/análise , Ácidos Graxos Voláteis/metabolismo
2.
Fitoterapia ; 174: 105877, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417680

RESUMO

Phytochemical study on the roots of a medicinal plant Ferula communis L. (Apiaceae) resulted in the isolation of 20 sesquiterpenes including 12 previously undescribed compounds, dauferulins A-L (1-12). The detailed spectroscopic analysis revealed 1-12 to be daucane-type sesquiterpenes with a p-methoxybenzoyloxy group at C-6. The absolute configurations of 1-12 were deduced by analysis of the ECD spectra. Dauferulins A-L (1-12), known sesquiterpenes (13-20), and analogues (14a-14l) derived from 6-O-p-methoxybenzoyl-10α-angeloyloxy-jeaschkeanadiol (14) were evaluated for their effects on AMPK phosphorylation in human hepatoma HepG2 cells as well as inhibitory activities against erastin-induced ferroptosis on human hepatoma Hep3B cells and IL-1ß production from LPS-treated murine microglial cells.


Assuntos
Carcinoma Hepatocelular , Ferula , Neoplasias Hepáticas , Sesquiterpenos , Humanos , Animais , Camundongos , Ferula/química , Carcinoma Hepatocelular/tratamento farmacológico , Estrutura Molecular , Sesquiterpenos/química , Raízes de Plantas/química
3.
J Pharmacol Sci ; 153(4): 232-242, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37973221

RESUMO

A strong hypoxic environment has been observed in pancreatic ductal adenocarcinoma (PDAC) cells, which contributes to drug resistance, tumor progression, and metastasis. Therefore, we performed bioinformatics analyses to investigate potential targets for the treatment of PDAC. To identify potential genes as effective PDAC treatment targets, we selected all genes whose expression level was related to worse overall survival (OS) in The Cancer Genome Atlas (TCGA) database and selected only the genes that matched with the genes upregulated due to hypoxia in pancreatic cancer cells in the dataset obtained from the Gene Expression Omnibus (GEO) database. Although the extracted 107 hypoxia-responsive genes included the genes that were slightly enriched in angiogenic factors, TCGA data analysis revealed that the expression level of endothelial cell (EC) markers did not affect OS. Finally, we selected CA9 and PRELID2 as potential targets for PDAC treatment and elucidated that a CA9 inhibitor, U-104, suppressed pancreatic cancer cell growth more effectively than 5-fluorouracil (5-FU) and PRELID2 siRNA treatment suppressed the cell growth stronger than CA9 siRNA treatment. Thus, we elucidated that specific inhibition of PRELID2 as well as CA9, extracted via exhaustive bioinformatic analyses of clinical datasets, could be a more effective strategy for PDAC treatment.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Anidrase Carbônica IX/genética , Anidrase Carbônica IX/metabolismo , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/uso terapêutico , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Hipóxia/metabolismo , RNA Interferente Pequeno , Biologia Computacional , Neoplasias Pancreáticas
4.
Bioorg Med Chem Lett ; 95: 129484, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37716415

RESUMO

Hypoxia in cancer is important in the development of cancer-selective medicines. Here, a novel hypoxia-responsible dual-prodrug is described. We designed and synthesized 2-nitroimidazole derivatives which spontaneously release both a PYG inhibitor and gemcitabine under hypoxic conditions. One such derivative, a prodrug 9 was found to be stable against chemical and enzymatic hydrolysis, and upon chemical reduction of the nitro group on imidazole, successfully releases both drugs. In an in vitro proliferation assay using human pancreatic cells, compound 9 exhibited significant anti-proliferative effects in hypoxia but fewer effects in normoxia. Consequently, prodrug 9 should be useful for cancer treatment due to its improved cancer selectivity and potential to overcome drug resistance.

5.
J Pharmacol Sci ; 153(1): 31-37, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37524452

RESUMO

BACKGROUND AND PURPOSE: TJ-17 (Goreisan), a traditional Japanese Kampo medicine, has been generally used to treat edema, such as heart failure, due to its diuretic effect. In the present study, we investigate the effects of TJ-17 on chronic kidney disease (CKD). METHODS: We the preventive action of TJ-17 against acute kidney injury (AKI) transition to CKD in vivo using a folic acid (FA)-induced mouse model. Mice were treated with food containing TJ-17 at 48 h after FA intraperitoneal injection (AKI phase). RESULTS: Histological analysis, as well as renal function and renal injury markers, deteriorated in mice with FA-induced CKD and were ameliorated by TJ-17 treatment. Increased levels of inflammatory cytokines and macrophage infiltration were also alleviated in mice treated with TJ-17. Renal fibrosis, a crucial factor in CKD, was induced by FA administration and inhibited by TJ-17 treatment. Pretreatment with TJ-17 did not exert an inhibitory effect on FA-induced AKI. The increase in urinary volume in FA-induced CKD mice was ameliorated by TJ-17 treatment, with a concurrent correction of reduced aquaporins expression in the kidney. CONCLUSION: TJ-17 may have a novel preventive effect against inflammation, oxidative stress, and fibrosis, contributing to innovation in the treatment of CKD.

6.
Front Cardiovasc Med ; 10: 1133611, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37008337

RESUMO

Heart failure results from various physiological and pathological stimuli that lead to cardiac hypertrophy. This pathological process is common in several cardiovascular diseases and ultimately leads to heart failure. The development of cardiac hypertrophy and heart failure involves reprogramming of gene expression, a process that is highly dependent on epigenetic regulation. Histone acetylation is dynamically regulated by cardiac stress. Histone acetyltransferases play an important role in epigenetic remodeling in cardiac hypertrophy and heart failure. The regulation of histone acetyltransferases serves as a bridge between signal transduction and downstream gene reprogramming. Investigating the changes in histone acetyltransferases and histone modification sites in cardiac hypertrophy and heart failure will provide new therapeutic strategies to treat these diseases. This review summarizes the association of histone acetylation sites and histone acetylases with cardiac hypertrophy and heart failure, with emphasis on histone acetylation sites.

7.
Life Sci ; 321: 121590, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36940907

RESUMO

AIMS: Peroxisome proliferator-activated receptor-alpha (PPARα) levels are markedly lower in the kidneys of chronic kidney disease (CKD) patients. Fibrates (PPARα agonists) are therapeutic agents against hypertriglyceridemia and potentially against CKD. However, conventional fibrates are eliminated by renal excretion, limiting their use in patients with impaired renal function. Here, we aimed to evaluate the renal risks associated with conventional fibrates via clinical database analysis and investigate the renoprotective effects of pemafibrate, a novel selective PPARα modulator mainly excreted into the bile. MAIN METHODS: The risks associated with conventional fibrates (fenofibrate, bezafibrate) to the kidneys were evaluated using the Food and Drug Administration Adverse Event Reporting System. Pemafibrate (1 or 0.3 mg/kg/day) was administered daily using an oral sonde. Its renoprotective effects were examined in unilateral ureteral obstruction (UUO)-induced renal fibrosis model mice (UUO mice) and adenine-induced CKD model mice (CKD mice). KEY FINDINGS: The ratios of glomerular filtration rate decreased and blood creatinine increased were markedly higher after conventional fibrate use. Pemafibrate administration suppressed increased gene expressions of collagen-I, fibronectin, and interleukin 1 beta (IL-1ß) in the kidneys of UUO mice. In CKD mice, it suppressed increased plasma creatinine and blood urea nitrogen levels and decreased red blood cell count, hemoglobin, and hematocrit levels, along with renal fibrosis. Moreover, it inhibited the upregulation of monocyte chemoattractant protein-1, IL-1ß, tumor necrosis factor-alpha, and IL-6 in the kidneys of CKD mice. SIGNIFICANCE: These results demonstrated the renoprotective effects of pemafibrate in CKD mice, confirming its potential as a therapeutic agent for renal disorders.


Assuntos
Fenofibrato , Insuficiência Renal Crônica , Obstrução Ureteral , Camundongos , Animais , PPAR alfa/metabolismo , Creatinina/metabolismo , Rim/metabolismo , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/complicações , Fenofibrato/farmacologia , Fibrose , Obstrução Ureteral/patologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-36460260

RESUMO

One of the major functions of peroxisomes in mammals is oxidation of very long-chain fatty acids (VLCFAs). Genetic defects in peroxisomal ß-oxidation result in the accumulation of VLCFAs and lead to a variety of health problems, such as demyelination of nervous tissues. However, the mechanisms by which VLCFAs cause tissue degeneration have not been fully elucidated. Recently, we found that the addition of small amounts of isopropanol can enhance the solubility of saturated VLCFAs in an aqueous medium. In this study, we characterized the biological effect of extracellular VLCFAs in peroxisome-deficient Chinese hamster ovary (CHO) cells, neural crest-derived pheochromocytoma cells (PC12), and immortalized adult Fischer rat Schwann cells (IFRS1) using this solubilizing technique. C20:0 FA was the most toxic of the C16-C26 FAs tested in all cells. The basis of the toxicity of C20:0 FA was apoptosis and was observed at 5 µM and 30 µM in peroxisome-deficient and wild-type CHO cells, respectively. The sensitivity of wild-type CHO cells to cytotoxic C20:0 FA was enhanced in the presence of a peroxisomal ß-oxidation inhibitor. Further, a positive correlation was evident between cell toxicity and the extent of intracellular accumulation of toxic FA. These results suggest that peroxisomes are pivotal in the detoxification of apoptotic VLCFAs by preventing their accumulation.


Assuntos
Ácidos Graxos , Peroxissomos , Cricetinae , Animais , Peroxissomos/metabolismo , Ácidos Graxos/metabolismo , Células CHO , Cricetulus , Oxirredução
9.
Phytomedicine ; 103: 154213, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35671634

RESUMO

BACKGROUND AND PURPOSE: Chinese herbal medicine has been developed as the traditional Japanese Kampo medicine, and it has been widely used to cure various symptoms in clinical practice. However, only a few studies are currently available on the effect of the Kampo medicine on renal disease. Nephrotoxicity is one of major side effect of cisplatin, the first metal-based anticancer drug. In the present study, we examined the effect of the Kampo medicine against cisplatin-induced nephrotoxicity (CIN). METHODS: First, we screened the ethical Kampo extract formulation having positive effect against CIN using HK-2 cells. Next, we examined the preventive action of the selected ethical Kampo extract formulation against CIN in vivo using a mouse model. RESULTS: Cisplatin-induced cell death was significantly suppressed by TJ-43 (Rikkunshito) and TJ-90 (Seihaito); however, cisplatin-induced cleaved caspase-3 expression was inhibited only by TJ-90. In an in vivo mouse model of cisplatin-induced kidney injury with dysfunction and increased inflammatory cytokine expression, TJ-90 showed amelioration of these damaging effects. Cisplatin-induced apoptosis and superoxide production were inhibited by treatment with TJ-90. The expression of cleaved caspase-3, 4-hydroxynonenal, and MAPK phosphorylation increased after cisplatin administration, but decreased after the administration of TJ-90. Among 16 crude drug extracts present in Seihaito, Bamboo Culm (Chikujo in Japanese) inhibited cisplatin-induced cell death and cleaved caspase-3 expression in HK-2 cells. Moreover, the anti-tumor effect of cisplatin was not affected by TJ-90 co-treatment in cancer cell lines. CONCLUSION: TJ-90 might have a novel preventive action against CIN through the suppression of inflammation, apoptosis, and oxidative stress without interfering with the anti-tumor effect of cisplatin. Collectively, these findings might contribute to innovations in supportive care for cancer treatment-related side effects.


Assuntos
Cisplatino , Medicamentos de Ervas Chinesas , Apoptose , Caspase 3/metabolismo , Cisplatino/efeitos adversos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Japão , Medicina Kampo
10.
J Med Invest ; 69(1.2): 1-7, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35466128

RESUMO

Iron is an essential trace metal for all life, but excess iron causes oxidative stress through catalyzing the toxic hydroxy-radical production via the Fenton reaction. The number of patients with obesity and diabetes has been increasing worldwide, and their onset and development are affected by diet. In both clinical and experimental studies, a high body iron content was associated with obesity and diabetes, and the reduction of body iron content to an appropriate level can ameliorate the status and development of obesity and diabetes. Macrophages play an essential role in the pathophysiology of obesity and diabetes, and in the metabolism and homeostasis of iron in the body. Recent studies demonstrated that macrophage polarization is related to adipocyte hypertrophy and insulin resistance through their capabilities of iron handling. Control of iron in macrophages is a potential therapeutic strategy for obesity and diabetes. J. Med. Invest. 69 : 1-7, February, 2022.


Assuntos
Diabetes Mellitus , Resistência à Insulina , Tecido Adiposo/metabolismo , Humanos , Resistência à Insulina/fisiologia , Ferro , Macrófagos/metabolismo , Obesidade/etiologia
11.
J Photochem Photobiol B ; 229: 112411, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35219030

RESUMO

The aim of this study is to investigate the fungicidal spectrum of six phenolic-cinnamic and -benzoic acid derivatives using four fungi, Aspergillus niger, Cladosporium cladosporioides, Trichophyton mentagrophytes and Candida albicans, in a photocombination system with violet 405-nm light. This is the first study to examine the fungicidal mechanism involving oxidative damage using the conidium of A. niger, as well as an assessment of cellular function and chemical characteristics. The results of the screening assay indicated that ferulic acid (FA) and vanillic acid (VA), which possess 4-hydroxyl and 3-methoxy groups in their phenolic acid structures, produced synergistic activity with 405-nm light irradiation. FA and VA (5.0 mM) significantly decreased the viability of A. niger by 2.4 to 2.6-logs under 90-min irradiation. The synergistic effects were attenuated by the addition of the radical scavenger dimethyl sulfoxide. Generation of reactive oxygen species (ROS), such as hydrogen peroxide and hydroxyl radicals, were confirmed in the phenolic acid solutions tested after irradiation with colorimetric and electron spin resonance analyses. Adsorption of FA and VA to conidia was greater than other tested phenolic acids, and produced 1.55- and 1.85-fold elevation of intracellular ROS levels, as determined using an oxidant-sensitive probe with flow cytometry analysis. However, cell wall or membrane damage was not the main mechanism by which the combination-induced fungal death was mediated. Intracellular ATP was drastically diminished (5% of control levels) following combined treatment with FA and light exposure, even under a condition that produced negligible decreases in viability, thereby resulting in pronounced growth delay. These results suggest that the first stage in the photofungicidal mechanism is oxidative damage to mitochondria or the cellular catabolism system associated with ATP synthesis, which is a result of the photoreaction of phenolic acids adsorbed and internalized by conidia. This photo-technology in combination with food-grade phenolic acids can aid in developing alternative approaches for disinfection of pathogenic and spoilage fungi in the fields of agriculture, food processing and medical care.


Assuntos
Anti-Infecciosos , Hidroxibenzoatos , Anti-Infecciosos/farmacologia , Candida albicans , Hidroxibenzoatos/farmacologia , Espécies Reativas de Oxigênio/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-34848380

RESUMO

Fatty acids (FAs) longer than C20 are classified as very long-chain fatty acids (VLCFAs). Although biosynthesis and degradation of VLCFAs are important for the development and integrity of the myelin sheath, knowledge on the incorporation of extracellular VLCFAs into the cells is limited due to the experimental difficulty of solubilizing them. In this study, we found that a small amount of isopropanol solubilized VLCFAs in aqueous medium by facilitating the formation of the VLCFA/albumin complex. Using this solubilizing technique, we examined the role of the peroxisome in the uptake and metabolism of VLCFAs in Chinese hamster ovary (CHO) cells. When wild-type CHO cells were incubated with saturated VLCFAs (S-VLCFAs), such as C23:0 FA, C24:0 FA, and C26:0 FA, extensive uptake was observed. Most of the incorporated S-VLCFAs were oxidatively degraded without acylation into cellular lipids. In contrast, in peroxisome-deficient CHO cells uptake of S-VLCFAs was marginal and oxidative metabolism was not observed. Extensive uptake and acylation of monounsaturated (MU)-VLCFAs, such as C24:1 FA and C22:1 FA, were observed in both types of CHO cells. However, oxidative metabolism was evident only in wild-type cells. Similar manners of uptake and metabolism of S-VLCFAs and MU-VLCFAs were observed in IFRS1, a Schwan cell-derived cell line. These results indicate that peroxisome-deficient cells limit intracellular S-VLCFAs at a low level by halting uptake, and as a result, peroxisome-deficient cells almost completely lose the clearance ability of S-VLCFAs accumulated outside of the cells.


Assuntos
Peroxissomos
13.
J Appl Microbiol ; 132(4): 2957-2967, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34894031

RESUMO

AIMS: To examine the antifungal action of photocombination treatment with ferulic acid (FA) and ultraviolet-A (UV-A) light (wavelength, 365 nm) by investigating associated changes in cellular functions of Saccharomyces cerevisiae. METHODS AND RESULTS: When pre-incubation of yeast cells with FA was extended from 0.5 to 10 min, its photofungicidal activity increased. Flow cytometry analysis of stained live and dead cells revealed that 10-min UV-A exposure combined with FA (1 mg ml-1 ) induced a ~99.9% decrease in cell viability although maintaining cell membrane integrity when compared with pre-exposure samples. When morphological and biochemical analysis were performed, treated cells exhibited an intact cell surface and oxidative DNA damage similar to control cells. Photocombination treatment induced cellular proteins oxidation, as shown by 2.3-fold increasing in immunostaining levels of ~49-kDa carbonylated proteins compared with pre-irradiation samples. Pyruvate kinase 1 (PK1) was identified by proteomics analysis as a candidate protein whose levels was affected by photocombination treatment. Moreover, intracellular ATP levels decreased following FA treatment both in darkness and with UV-A irradiation, thus suggesting a possible FA-induced delay in cell growth. CONCLUSIONS: FA functions within the cytoplasmic membrane; addition of UV-A exposure induces increased oxidative modifications of cytosolic proteins such as PK1, which functions in ATP generation, without causing detectable genotoxicity, thus triggering inactivation of yeast cells. SIGNIFICANCE AND IMPACT OF THE STUDY: Microbial contamination is a serious problem that diminishes the quality of fruits and vegetables. Combining light exposure with food-grade phenolic acids such as FA is a promising disinfection technology for applications in agriculture and food processing. However, the mode of photofungicidal action of FA with UV-A light remains unclear. This study is the first to elucidate the mechanism using S. cerevisiae. Moreover, proteomics analyses identified a specific cytosolic protein, PK1, which is oxidatively modified by photocombination treatment.


Assuntos
Antifúngicos , Saccharomyces cerevisiae , Ácidos Cumáricos/metabolismo , Ácidos Cumáricos/farmacologia , Saccharomyces cerevisiae/metabolismo , Raios Ultravioleta
14.
Chem Commun (Camb) ; 57(82): 10763-10766, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34585682

RESUMO

Cu(II)-mediated C-H sulphenylation or selenylation of Trp indole by a derivative of cysteine or selenocysteine enables access to the tryptathionine unit or its selenium congener. The mechanism of these protocols, which allow macrocyclization of Trp-containing peptides, has been studied.


Assuntos
Cobre/química , Peptídeos Cíclicos/síntese química , Selênio/química , Triptofano/química , Sequência de Aminoácidos , Catálise , Ciclização , Dissulfetos/química , Indóis/química , Lactamas/química , Oxirredução , Fenotiazinas/química , Pirrolidinonas/química , Tripsina/química
16.
J Trace Elem Med Biol ; 67: 126798, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34087581

RESUMO

BACKGROUND: Cisplatin is widely used as an antitumor drug for the treatment of solid tumors. However, its use has been limited owing to nephrotoxicity, a major side effect. The mechanism of cisplatin-induced nephrotoxicity (CIN) has long been investigated in order to develop preventive/therapeutic drugs. Ferroptosis is a newly identified form of non-apoptotic regulated cell death induced by iron-mediated lipid peroxidation and is involved in the pathophysiology of various diseases. In this study, we examined the role of ferroptosis in CIN. METHODS: We evaluated the role of ferroptosis in CIN by in vivo experiments in a mouse model. RESULTS: Cisplatin increased the protein expressions of transferrin receptor-1 and ferritin, and iron content in the kidney of mice. In addition, treatment with cisplatin augmented renal ferrous iron and hydroxyl radical levels with co-localization. Mice administered cisplatin demonstrated kidney injury, with renal dysfunction and increased inflammatory cytokine expression; these changes were ameliorated by Ferrostatin-1 (Fer-1), an inhibitor of ferroptosis. The expression of the ferroptosis markers, COX2 and 4-hydroxynonenal (4-HNE), increased with cisplatin administration, and decreased with the administration of Fer-1. By contrast, cisplatin-induced apoptosis and necroptosis were inhibited by treatment with Fer-1. Moreover, deferoxamine, an iron chelator, also inhibited CIN, with a decrease in the expression of COX-2 and 4-HNE. CONCLUSION: Ferroptosis is involved in the pathogenesis of CIN and might be used as a new preventive target for CIN.


Assuntos
Cisplatino/toxicidade , Ferroptose , Animais , Ferritinas , Ferro/metabolismo , Peroxidação de Lipídeos , Camundongos
17.
Eur J Pharmacol ; 902: 174099, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-33910036

RESUMO

Despite the availability of more than 20 clinical antiepileptic drugs, approximately 30% of patients with epilepsy do not respond to antiepileptic drug treatment. Therefore, it is important to develop antiepileptic products that function via novel mechanisms. In the present study, we evaluated data from one of the largest global databases to identify drugs with antiepileptic effects, and subsequently attempted to understand the effect of the combination of antiepileptic drugs and valacyclovir in epileptic seizures using a kindling model. To induce kindling in mice, pentylenetetrazol at a dose of 40 mg/kg was administered once every 48 h. Valacyclovir was orally administered 30 min before antiepileptic drug injection in kindled mice, and behavioral seizures were monitored for 20 min following pentylenetetrazol administration. Additionally, c-Fos expression in the hippocampal dentate gyrus was measured in kindled mice. Valacyclovir showed inhibitory effects on pentylenetetrazol-induced kindled seizures. In addition, simultaneous use of levetiracetam and valacyclovir caused more potent inhibition of seizure activity, and neither valproic acid nor diazepam augmented the anti-seizure effect in kindled mice. Furthermore, kindled mice showed increased c-Fos levels in the dentate gyrus. The increase in c-Fos expression was significantly inhibited by the simultaneous use of levetiracetam and valacyclovir. The findings of the present study indicate that a combination of levetiracetam and valacyclovir had possible anticonvulsive effects on pentylenetetrazol-induced kindled epileptic seizures. These results suggest that valacyclovir may have an antiseizure effect in patients with epilepsy.


Assuntos
Anticonvulsivantes/farmacologia , Excitação Neurológica/efeitos dos fármacos , Convulsões/tratamento farmacológico , Valaciclovir/farmacologia , Animais , Anticonvulsivantes/uso terapêutico , Cefepima/efeitos adversos , Bases de Dados Factuais , Modelos Animais de Doenças , Reposicionamento de Medicamentos , Quimioterapia Combinada , Hipocampo/efeitos dos fármacos , Humanos , Levetiracetam/farmacologia , Levetiracetam/uso terapêutico , Masculino , Camundongos , Pentilenotetrazol/toxicidade , Proteínas Proto-Oncogênicas c-fos/metabolismo , Convulsões/induzido quimicamente , Valaciclovir/uso terapêutico
18.
Sci Rep ; 11(1): 5070, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658595

RESUMO

Inactivation technology for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is certainly a critical measure to mitigate the spread of coronavirus disease 2019 (COVID-19). A deep ultraviolet light-emitting diode (DUV-LED) would be a promising candidate to inactivate SARS-CoV-2, based on the well-known antiviral effects of DUV on microorganisms and viruses. However, due to variations in the inactivation effects across different viruses, quantitative evaluations of the inactivation profile of SARS-CoV-2 by DUV-LED irradiation need to be performed. In the present study, we quantify the irradiation dose of DUV-LED necessary to inactivate SARS-CoV-2. For this purpose, we determined the culture media suitable for the irradiation of SARS-CoV-2 and optimized the irradiation apparatus using commercially available DUV-LEDs that operate at a center wavelength of 265, 280, or 300 nm. Under these conditions, we successfully analyzed the relationship between SARS-CoV-2 infectivity and the irradiation dose of the DUV-LEDs at each wavelength without irrelevant biological effects. In conclusion, total doses of 1.8 mJ/cm2 for 265 nm, 3.0 mJ/cm2 for 280 nm, and 23 mJ/cm2 for 300 nm are required to inactivate 99.9% of SARS-CoV-2. Our results provide quantitative antiviral effects of DUV irradiation on SARS-CoV-2, serving as basic knowledge of inactivation technologies against SARS-CoV-2.


Assuntos
SARS-CoV-2/efeitos da radiação , Terapia Ultravioleta/métodos , Inativação de Vírus/efeitos da radiação , COVID-19/epidemiologia , COVID-19/transmissão , Humanos , SARS-CoV-2/metabolismo , Raios Ultravioleta , Viroses/prevenção & controle
19.
Kidney Int ; 99(4): 885-899, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33307103

RESUMO

Cisplatin is widely used as an anti-tumor drug for the treatment of solid tumors. Unfortunately, it causes kidney toxicity as a critical side effect, limiting its use, given that no preventive drug against cisplatin-induced kidney toxicity is currently available. Here, based on a repositioning analysis of the Food and Drug Administration Adverse Events Reporting System, we found that a previously developed drug, diphenhydramine, may provide a novel treatment for cisplatin-induced kidney toxicity. To confirm this, the actual efficacy of diphenhydramine was evaluated in in vitro and in vivo experiments. Diphenhydramine inhibited cisplatin-induced cell death in kidney proximal tubular cells. Mice administered cisplatin developed kidney injury with significant dysfunction (mean plasma creatinine: 0.43 vs 0.15 mg/dl) and showed augmented oxidative stress, increased apoptosis, elevated inflammatory cytokines, and MAPKs activation. However, most of these symptoms were suppressed by treatment with diphenhydramine. Furthermore, the concentration of cisplatin in the kidney was significantly attenuated in diphenhydramine-treated mice (mean platinum content: 70.0 vs 53.4 µg/g dry kidney weight). Importantly, diphenhydramine did not influence or interfere with the anti-tumor effect of cisplatin in any of the in vitro or in vivo experiments. In a selected cohort of 98 1:1 matched patients from a retrospective database of 1467 patients showed that patients with malignant cancer who had used diphenhydramine before cisplatin treatment exhibited significantly less acute kidney injury compared to ones who did not (6.1 % vs 22.4 %, respectively). Thus, diphenhydramine demonstrated efficacy as a novel preventive medicine against cisplatin-induced kidney toxicity.


Assuntos
Injúria Renal Aguda , Antineoplásicos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/prevenção & controle , Animais , Antineoplásicos/toxicidade , Apoptose , Cisplatino/toxicidade , Difenidramina/metabolismo , Difenidramina/farmacologia , Difenidramina/uso terapêutico , Humanos , Rim/metabolismo , Camundongos , Estresse Oxidativo , Estudos Retrospectivos
20.
Lipids ; 56(2): 181-188, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32996178

RESUMO

Sphingomyelin (SM) with N-α-hydroxy fatty acyl residues (hSM) has been shown to occur in mammalian skin and digestive epithelia. However, the metabolism and physiological relevance of this characteristic SM species have not been fully elucidated yet. Here, we show methods for mass spectrometric characterization and quantification of hSM. The hSM in mouse skin was isolated by TLC. The hydroxy hexadecanoyl residue was confirmed by electron impact ionization-induced fragmentation in gas chromatography-mass spectrometry. Mass shift analysis of acetylated hSM by time of flight mass spectrometry revealed the number of hydroxyl groups in the molecule. After correcting the difference in detection efficacy, hSM in mouse skin and intestinal mucosa were quantified by liquid chromatography-tandem mass spectrometry, and found to be 16.5 ± 2.0 and 0.8 ± 0.4 nmol/µmol phospholipid, respectively. The methods described here are applicable to biological experiments on hSM in epithelia of the body surface and digestive tract.


Assuntos
Ácidos Graxos/análise , Pele/química , Esfingomielinas/análise , Animais , Cromatografia Gasosa , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos ICR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...