Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-33344798

RESUMO

There has been a recent surge of interest and progress in creating subwavelength free-space optical potentials for ultracold atoms. A key open question is whether geometric potentials, which are repulsive and ubiquitous in the creation of subwavelength free-space potentials, forbid the creation of narrow traps with long lifetimes. Here, we show that it is possible to create such traps. We propose two schemes for realizing subwavelength traps and demonstrate their superiority over existing proposals. We analyze the lifetime of atoms in such traps and show that long-lived bound states are possible. This work allows for subwavelength control and manipulation of ultracold matter, with applications in quantum chemistry and quantum simulation.

2.
Artigo em Inglês | MEDLINE | ID: mdl-35528197

RESUMO

Optical lattices are typically created via the ac Stark shift and are limited by diffraction to periodicities ⩾ λ/2, where λ is the wavelength of light used to create them. Lattices with smaller periodicities may be useful for many-body physics with cold atoms and can be generated by stroboscopic application of a phase-shifted lattice with subwavelength features. Here we demonstrate a λ/4-spaced lattice by stroboscopically applying optical Kronig-Penney-like potentials which are generated using spatially dependent dark states. We directly probe the periodicity of the λ/4-spaced lattice by measuring the average probability density of the atoms loaded into the ground band of the lattice. We measure lifetimes of atoms in this lattice and discuss the mechanisms that limit the applicability of this stroboscopic approach.

3.
Phys Rev X ; 9(2)2019.
Artigo em Inglês | MEDLINE | ID: mdl-32269866

RESUMO

Quantum simulations with ultracold atoms typically create atomic wavefunctions with structures at optical length scales, where direct imaging suffers from the diffraction limit. In analogy to advances in optical microscopy for biological applications, we use a non-linear atomic response to surpass the diffraction limit. Exploiting quantum interference, we demonstrate imaging with super-resolution of λ/50 and excellent temporal resolution of 500 ns. We characterize our microscope's performance by measuring the ensemble averaged probability density of atoms within the unit cells of an optical lattice, and observe the dynamics of atoms excited into motion. This approach can be readily applied to image any atomic or molecular system, as long as it hosts a three-level system.

4.
Phys Rev Lett ; 120(8): 083601, 2018 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-29543021

RESUMO

We report on the experimental realization of a conservative optical lattice for cold atoms with a subwavelength spatial structure. The potential is based on the nonlinear optical response of three-level atoms in laser-dressed dark states, which is not constrained by the diffraction limit of the light generating the potential. The lattice consists of a one-dimensional array of ultranarrow barriers with widths less than 10 nm, well below the wavelength of the lattice light, physically realizing a Kronig-Penney potential. We study the band structure and dissipation of this lattice and find good agreement with theoretical predictions. Even on resonance, the observed lifetimes of atoms trapped in the lattice are as long as 44 ms, nearly 10^{5} times the excited state lifetime, and could be further improved with more laser intensity. The potential is readily generalizable to higher dimensions and different geometries, allowing, for example, nearly perfect box traps, narrow tunnel junctions for atomtronics applications, and dynamically generated lattices with subwavelength spacings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...