Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Antimicrob Agents Chemother ; 68(3): e0139923, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38329330

RESUMO

Non-clinical antibiotic development relies on in vitro susceptibility and infection model studies. Validating the achievement of the targeted drug concentrations is essential to avoid under-estimation of drug effects and over-estimation of resistance emergence. While certain ß-lactams (e.g., imipenem) and ß-lactamase inhibitors (BLIs; clavulanic acid) are believed to be relatively unstable, limited tangible data on their stability in commonly used in vitro media are known. We aimed to determine the thermal stability of 10 ß-lactams and 3 BLIs via LC-MS/MS in cation-adjusted Mueller Hinton broth at 25 and 36°C as well as agar at 4 and 37°C, and in water at -20, 4, and 25°C. Supplement dosing algorithms were developed to achieve broth concentrations close to their target over 24 h. During incubation in broth (pH 7.25)/agar, degradation half-lives were 16.9/21.8 h for imipenem, 20.7/31.6 h for biapenem, 29.0 h for clavulanic acid (studied in broth only), 23.1/71.6 h for cefsulodin, 40.6/57.9 h for doripenem, 46.5/64.6 h for meropenem, 50.8/97.7 h for cefepime, 61.5/99.5 h for piperacillin, and >120 h for all other compounds. Broth stability decreased at higher pH. All drugs were ≥90% stable for 72 h in agar at 4°C. Degradation half-lives in water at 25°C were >200 h for all drugs except imipenem (14.7 h, at 1,000 mg/L) and doripenem (59.5 h). One imipenem supplement dose allowed concentrations to stay within ±31% of their target concentration. This study provides comprehensive stability data on ß-lactams and BLIs in relevant in vitro media using LC-MS/MS. Future studies are warranted applying these data to antimicrobial susceptibility testing and assessing the impact of ß-lactamase-related degradation.


Assuntos
Inibidores de beta-Lactamases , beta-Lactamas , Inibidores de beta-Lactamases/farmacologia , beta-Lactamas/farmacologia , Doripenem , Ágar , Cromatografia Líquida , Espectrometria de Massas em Tandem , Antibacterianos/farmacologia , Penicilinas , Ácido Clavulânico/farmacologia , Imipenem/farmacologia , Água , Testes de Sensibilidade Microbiana
2.
Sci Rep ; 14(1): 3148, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326428

RESUMO

Antimicrobial resistance has emerged as one of the leading public health threats of the twenty-first century. Gram-negative pathogens have been a major contributor to the declining efficacy of antibiotics through both acquired resistance and tolerance. In this study, a pan-drug resistant (PDR), NDM-1 and CTX-M-15 co-producing isolate of K. pneumoniae, CDC Nevada, (Kp Nevada) was exposed to the clinical combination of aztreonam + ceftazidime/avibactam (ATM/CAZ/AVI) to overcome metallo-ß-lactamases. Unexpectedly, the ß-lactam combination resulted in long filamentous cell formation induced by PBP3 inhibition over 168 h in the hollow fiber infection model experiments with eventual reversion of the total population upon drug removal. However, the addition of imipenem to the two drug ß-lactam combination was highly synergistic with suppression of all drug resistant subpopulations over 5 days. Scanning electron microscopy and fluorescence microscopy for all imipenem combinations in time kill studies suggested a role for imipenem in suppression of long filamentous persisters, via the formation of metabolically active spheroplasts. To complement the imaging studies, salient transcriptomic changes were quantified using RT-PCR and novel cassette assay evaluated ß-lactam permeability. This showed significant upregulation of both spheroplast protein Y (SPY), a periplasmic chaperone protein that has been shown to be related to spheroplast formation, and penicillin binding proteins (PBP1, PBP2, PBP3) for all combinations involving imipenem. However, with aztreonam alone, pbp1, pbp3 and spy remained unchanged while pbp2 levels were downregulated by > 25%. Imipenem displayed 207-fold higher permeability as compared with aztreonam (mean permeability coefficient of 17,200 nm/s). Although the clinical combination of aztreonam/avibactam and ceftazidime has been proposed as an important treatment of MBL Gram-negatives, we report the first occurrence of long filamentous persister formation. To our knowledge, this is the first study that defines novel ß-lactam combinations involving imipenem via maximal suppression of filamentous persisters to combat PDR CDC Nevada K. pneumoniae.


Assuntos
Compostos Azabicíclicos , Ceftazidima , Klebsiella pneumoniae , Ceftazidima/farmacologia , Klebsiella pneumoniae/metabolismo , Aztreonam/farmacologia , Antibacterianos/farmacologia , Imipenem/farmacologia , beta-Lactamases/metabolismo , Combinação de Medicamentos , Testes de Sensibilidade Microbiana
3.
Clin Pharmacol Ther ; 115(4): 896-905, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38062797

RESUMO

Developing optimized regimens for combination antibiotic therapy is challenging and often performed empirically over many clinical studies. Novel implementation of a hybrid machine-learning pharmacokinetic/pharmacodynamic/toxicodynamic (ML-PK/PD/TD) approach optimizes combination therapy using human PK/TD data along with in vitro PD data. This study utilized human population PK (PopPK) of aztreonam, ceftazidime/avibactam, and polymyxin B along with in vitro PDs from the Hollow Fiber Infection Model (HFIM) to derive optimal multi-drug regimens de novo through implementation of a genetic algorithm (GA). The mechanism-based PD model was constructed based on 7-day HFIM experiments across 4 clinical, extensively drug resistant Klebsiella pneumoniae isolates. GA-led optimization was performed using 13 different fitness functions to compare the effects of different efficacy (60%, 70%, 80%, or 90% of simulated subjects achieving bacterial counts of 102 CFU/mL) and toxicity (66% of simulated subjects having a target polymyxin B area under the concentration-time curve [AUC] of 100 mg·h/L and aztreonam AUC of 1,332 mg·h/L) on the optimized regimen. All regimens, except those most heavily weighted for toxicity prevention, were able to achieve the target efficacy threshold (102 CFU/mL). Overall, GA-based regimen optimization using preclinical data from animal-sparing in vitro studies and human PopPK produced clinically relevant dosage regimens similar to those developed empirically over many years for all three antibiotics. Taken together, these data provide significant insight into new therapeutic approaches incorporating ML to regimen design and treatment of resistant bacterial infections.


Assuntos
Aztreonam , Polimixina B , Animais , Humanos , Aztreonam/farmacologia , Saúde Pública , Antibacterianos/efeitos adversos , Bactérias Gram-Negativas
4.
J Pharm Sci ; 113(1): 202-213, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37879409

RESUMO

Colistin is a polymyxin and peptide antibiotic that can yield rapid bacterial killing, but also leads to resistance emergence. We aimed to develop a novel experimental and Quantitative and Systems Pharmacology approach to distinguish between inducible and non-inducible resistance. Viable count profiles for the total and less susceptible populations of Pseudomonas aeruginosa ATCC 27853 from static and dynamic in vitro infection models were simultaneously modeled. We studied low and normal initial inocula to distinguish between inducible and non-inducible resistance. A novel cutoff filter approach allowed us to describe the eradication and inter-conversion of bacterial populations. At all inocula, 4.84 mg/L of colistin (sulfate) yielded ≥4 log10 killing, followed by >4 log10 regrowth. A pre-existing, less susceptible population was present at standard but not at low inocula. Formation of a non-pre-existing, less susceptible population was most pronounced at intermediate colistin (sulfate) concentrations (0.9 to 5 mg/L). Both less susceptible populations inter-converted with the susceptible population. Simultaneously modeling of the total and less susceptible populations at low and standard inocula enabled us to identify the de novo formation of an inducible, less susceptible population. Inducible resistance at intermediate colistin concentrations highlights the importance of rapidly achieving efficacious polymyxin concentrations by front-loaded dosage regimens.


Assuntos
Colistina , Infecções por Pseudomonas , Humanos , Colistina/farmacologia , Pseudomonas aeruginosa , Farmacologia em Rede , Antibacterianos , Infecções por Pseudomonas/tratamento farmacológico , Sulfatos , Testes de Sensibilidade Microbiana
5.
J Biomed Sci ; 29(1): 89, 2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36310165

RESUMO

BACKGROUND: Understanding the mechanism of antimicrobial action is critical for improving antibiotic therapy. For the first time, we integrated correlative metabolomics and transcriptomics of Pseudomonas aeruginosa to elucidate the mechanism of synergistic killing of polymyxin-rifampicin combination. METHODS: Liquid chromatography-mass spectrometry and RNA-seq analyses were conducted to identify the significant changes in the metabolome and transcriptome of P. aeruginosa PAO1 after exposure to polymyxin B (1 mg/L) and rifampicin (2 mg/L) alone, or in combination over 24 h. A genome-scale metabolic network was employed for integrative analysis. RESULTS: In the first 4-h treatment, polymyxin B monotherapy induced significant lipid perturbations, predominantly to fatty acids and glycerophospholipids, indicating a substantial disorganization of the bacterial outer membrane. Expression of ParRS, a two-component regulatory system involved in polymyxin resistance, was increased by polymyxin B alone. Rifampicin alone caused marginal metabolic perturbations but significantly affected gene expression at 24 h. The combination decreased the gene expression of quorum sensing regulated virulence factors at 1 h (e.g. key genes involved in phenazine biosynthesis, secretion system and biofilm formation); and increased the expression of peptidoglycan biosynthesis genes at 4 h. Notably, the combination caused substantial accumulation of nucleotides and amino acids that last at least 4 h, indicating that bacterial cells were in a state of metabolic arrest. CONCLUSION: This study underscores the substantial potential of integrative systems pharmacology to determine mechanisms of synergistic bacterial killing by antibiotic combinations, which will help optimize their use in patients.


Assuntos
Polimixina B , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/genética , Polimixina B/farmacologia , Polimixina B/metabolismo , Rifampina/farmacologia , Rifampina/metabolismo , Transcriptoma , Polimixinas/farmacologia , Polimixinas/metabolismo , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
6.
Antimicrob Agents Chemother ; 66(9): e0052722, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35924913

RESUMO

Metallo-ß-lactamase (MBL)-producing Gram-negative bacteria cause infections associated with high rates of morbidity and mortality. Currently, a leading regimen to treat infections caused by MBL-producing bacteria is aztreonam combined with ceftazidime-avibactam. The purpose of the present study was to evaluate and rationally optimize the combination of aztreonam and ceftazidime-avibactam with and without polymyxin B against a clinical Klebsiella pneumoniae isolate producing NDM-1 and CTX-M by use of the hollow fiber infection model (HFIM). A novel de-escalation approach to polymyxin B dosing was also explored, whereby a standard 0-h loading dose was followed by maintenance doses that were 50% of the typical clinical regimen. In the HFIM, the addition of polymyxin B to aztreonam plus ceftazidime-avibactam significantly improved bacterial killing, leading to eradication, including for the novel de-escalation dosing strategy. Serial samples from the growth control and monotherapies were explored in a Galleria mellonella virulence model to assess virulence changes. Weibull regression showed that low-level ceftazidime resistance and treatment with monotherapy resulted in increased G. mellonella mortality (P < 0.05). A neutropenic rabbit pneumonia model demonstrated that aztreonam plus ceftazidime-avibactam with or without polymyxin B resulted in similar bacterial killing, and these combination therapies were statistically significantly better than monotherapies (P < 0.05). However, only the polymyxin B-containing combination therapy produced a statistically significant decrease in lung weights (P < 0.05), indicating a decreased inflammatory process. Altogether, adding polymyxin B to the combination of aztreonam plus ceftazidime-avibactam for NDM- and CTX-M-producing K. pneumoniae improved bacterial killing effects, reduced lung inflammation, suppressed resistance amplification, and limited virulence changes.


Assuntos
Ceftazidima , Klebsiella pneumoniae , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos/farmacologia , Compostos Azabicíclicos/uso terapêutico , Aztreonam/farmacologia , Ceftazidima/farmacologia , Ceftazidima/uso terapêutico , Parede Celular/metabolismo , Combinação de Medicamentos , Klebsiella/metabolismo , Testes de Sensibilidade Microbiana , Polimixina B/farmacologia , Coelhos , beta-Lactamases/metabolismo
7.
Lancet Microbe ; 3(10): e795-e802, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35777386

RESUMO

Antibiotic resistance presents an incessant threat to our drug armamentarium that necessitates novel approaches to therapy. Over the past several decades, investigation of pharmacokinetic and pharmacodynamic (PKPD) principles has substantially improved our understanding of the relationships between the antibiotic, pathogen, and infected patient. However, crucial gaps in our understanding of the pharmacology of antibacterials and their optimal use in the care of patients continue to exist; simply attaining antibiotic exposures that are considered adequate based on traditional targets can still result in treatment being unsuccessful and resistance proliferation for some infections. It is this salient paradox that points to key future directions for research in antibiotic therapeutics. This Personal View discusses six priority areas for antibiotic pharmacology research: (1) antibiotic-pathogen interactions, (2) antibiotic targets for combination therapy, (3) mechanistic models that describe the time-course of treatment response, (4) understanding and modelling of host response to infection, (5) personalised medicine through therapeutic drug management, and (6) application of these principles to support development of novel therapies. Innovative approaches that enhance our understanding of antibiotic pharmacology and facilitate more accurate predictions of treatment success, coupled with traditional pharmacology research, can be applied at the population level and to individual patients to improve outcomes.


Assuntos
Antibacterianos , Pesquisa , Antibacterianos/farmacologia , Humanos , Assistência ao Paciente
8.
Clin Pharmacol Ther ; 109(4): 1000-1020, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33576025

RESUMO

Multidrug-resistant bacteria are causing a serious global health crisis. A dramatic decline in antibiotic discovery and development investment by pharmaceutical industry over the last decades has slowed the adoption of new technologies. It is imperative that we create new mechanistic insights based on latest technologies, and use translational strategies to optimize patient therapy. Although drug development has relied on minimal inhibitory concentration testing and established in vitro and mouse infection models, the limited understanding of outer membrane permeability in Gram-negative bacteria presents major challenges. Our team has developed a platform using the latest technologies to characterize target site penetration and receptor binding in intact bacteria that inform translational modeling and guide new discovery. Enhanced assays can quantify the outer membrane permeability of ß-lactam antibiotics and ß-lactamase inhibitors using multiplex liquid chromatography tandem mass spectrometry. While ß-lactam antibiotics are known to bind to multiple different penicillin-binding proteins (PBPs), their binding profiles are almost always studied in lysed bacteria. Novel assays for PBP binding in the periplasm of intact bacteria were developed and proteins identified via proteomics. To characterize bacterial morphology changes in response to PBP binding, high-throughput flow cytometry and time-lapse confocal microscopy with fluorescent probes provide unprecedented mechanistic insights. Moreover, novel assays to quantify cytosolic receptor binding and intracellular drug concentrations inform target site occupancy. These mechanistic data are integrated by quantitative and systems pharmacology modeling to maximize bacterial killing and minimize resistance in in vitro and mouse infection models. This translational approach holds promise to identify antibiotic combination dosing strategies for patients with serious infections.


Assuntos
Técnicas Bacteriológicas/métodos , Descoberta de Drogas/métodos , Farmacorresistência Bacteriana Múltipla/fisiologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/fisiologia , Animais , Membrana Celular/fisiologia , Modelos Animais de Doenças , Humanos , Modelos Teóricos , Proteínas de Ligação às Penicilinas/fisiologia , beta-Lactamas/farmacologia
9.
Int J Antimicrob Agents ; 57(3): 106269, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33358761

RESUMO

OBJECTIVE: Antimicrobial pharmacokinetics/pharmacodynamics (PK/PD) principles and PK/PD models have been essential in characterizing the mechanism of antibiotic bacterial killing and determining the most optimal dosing regimen that maximizes clinical outcomes. This review summarized the fundamentals of antimicrobial PK/PD and the various types of PK/PD experiments that shaped the utilization and dosing strategies of antibiotics today. METHODS: Multiple databases - including PubMed, Scopus, and EMBASE - were searched for published articles that involved PK/PD modelling and precision dosing. Data from in vitro, in vivo and mechanistic PK/PD models were reviewed as a basis for compiling studies that guide dosing regimens used in clinical trials. RESULTS: Literature regarding the utilization of exposure-response analyses, mathematical modelling and simulations that were summarized are able to provide a better understanding of antibiotic pharmacodynamics that influence translational drug development. Optimal pharmacokinetic sampling of antibiotics from patients can lead to personalized dosing regimens that attain target concentrations while minimizing toxicity. Thus the development of a fully integrated mechanistic model based on systems pharmacology can continually adapt to data generated from clinical responses, which can provide the framework for individualized dosing regimens. CONCLUSIONS: The promise of what PK/PD can provide through precision dosing for antibiotics has not been fully realized in the clinical setting. Antimicrobial resistance, which has emerged as a significant public health threat, has forced clinicians to empirically utilize therapies. Future research focused on implementation and translation of PK/PD-based approaches integrating novel approaches that combine knowledge of combination therapies, systems pharmacology and resistance mechanisms are necessary. To fully realize maximally precise therapeutics, optimal PK/PD strategies are critical to maximize antimicrobial efficacy against extremely-drug-resistant organisms, while minimizing toxicity.


Assuntos
Antibacterianos/administração & dosagem , Antibacterianos/farmacocinética , Relação Dose-Resposta a Droga , Farmacorresistência Bacteriana , Sinergismo Farmacológico , Modelos Biológicos , Animais , Descoberta de Drogas , Monitoramento de Medicamentos , Quimioterapia Combinada , Humanos , Testes de Sensibilidade Microbiana , Medicina de Precisão , Resultado do Tratamento
11.
JMIR Mhealth Uhealth ; 8(12): e20525, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33325835

RESUMO

BACKGROUND: Determining a suitable dose of intravenous colistimethate is challenging because of complicated pharmacokinetics, confusing terminology, and the potential for renal toxicity. Only recently have reliable pharmacokinetic/pharmacodynamic data and dosing recommendations for intravenous colistimethate become available. OBJECTIVE: The aim of this work was to develop a clinician-friendly, easy-to-use mobile app incorporating up-to-date dosing recommendations for intravenous colistimethate in critically ill adult patients. METHODS: Swift programming language and common libraries were used for the development of an app, ColistinDose, on the iPhone operating system (iOS; Apple Inc). The compatibility among different iOS versions and mobile devices was validated. Dosing calculations were based on equations developed in our recent population pharmacokinetic study. Recommended doses generated by the app were validated by comparison against doses calculated manually using the appropriate equations. RESULTS: ColistinDose provides 3 major functionalities, namely (1) calculation of a loading dose, (2) calculation of a daily dose based on the renal function of the patient (including differing types of renal replacement therapies), and (3) retrieval of historical calculation results. It is freely available at the Apple App Store for iOS (version 9 and above). Calculated doses accurately reflected doses recommended in patients with varying degrees of renal function based on the published equations. ColistinDose performs calculations on a local mobile device (iPhone or iPad) without the need for an internet connection. CONCLUSIONS: With its user-friendly interface, ColistinDose provides an accurate and easy-to-use tool for clinicians to calculate dosage regimens of intravenous colistimethate in critically ill patients with varying degrees of renal function. It has significant potential to avoid the prescribing errors and patient safety issues that currently confound the clinical use of colistimethate, thereby optimizing patient treatment.


Assuntos
Aplicativos Móveis , Adulto , Antibacterianos/uso terapêutico , Colistina/análogos & derivados , Estado Terminal , Humanos
12.
J Antimicrob Chemother ; 75(9): 2622-2632, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32464664

RESUMO

BACKGROUND: MBL-producing strains of Enterobacteriaceae are a major public health concern. We sought to define optimal combination regimens of ceftazidime/avibactam with aztreonam in a hollow-fibre infection model (HFIM) of MBL-producing strains of Escherichia coli and Klebsiella pneumoniae. METHODS: E. coli ARLG-1013 (blaNDM-1, blaCTX-M, blaCMY, blaTEM) and K. pneumoniae ARLG-1002 (blaNDM-1, blaCTXM-15, blaDHA, blaSHV, blaTEM) were studied in the HFIM using simulated human dosing regimens of ceftazidime/avibactam and aztreonam. Experiments were designed to evaluate the effect of staggered versus simultaneous administration, infusion duration and aztreonam daily dose (6 g/day versus 8 g/day) on bacterial killing and resistance suppression. Prospective validation experiments for the most active combination regimens were performed in triplicate to ensure reproducibility. RESULTS: Staggered administration of the combination (ceftazidime/avibactam followed by aztreonam) was found to be inferior to simultaneous administration. Longer infusion durations (2 h and continuous infusion) also resulted in enhanced bacterial killing relative to 30 min infusions. The rate of killing was more pronounced with 8 g/day versus 6 g/day aztreonam combination regimens for both tested strains. In the prospective validation experiments, ceftazidime/avibactam with aztreonam dosed every 8 and 6 h, respectively (ceftazidime/avibactam 2/0.5 g every 8 h + aztreonam 2 g every 6 h), or ceftazidime/avibactam with aztreonam as continuous infusions resulted in maximal bacterial killing and resistance suppression over 7 days. CONCLUSIONS: Simultaneous administration of aztreonam 8 g/day given as a continuous or 2 h infusion with ceftazidime/avibactam resulted in complete bacterial eradication and resistance suppression. Further study of this combination is needed with additional MBL-producing Gram-negative pathogens. The safety of this double ß-lactam strategy also warrants further study in Phase 1 clinical trials.


Assuntos
Aztreonam , Ceftazidima , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos , Combinação de Medicamentos , Enterobacteriaceae , Escherichia coli , Humanos , Testes de Sensibilidade Microbiana , Estudos Prospectivos , Reprodutibilidade dos Testes , beta-Lactamases
13.
Artigo em Inglês | MEDLINE | ID: mdl-32393492

RESUMO

Resistance to polymyxin antibiotics is increasing. Without new antibiotic classes, combination therapy is often required. We systematically investigated bacterial killing with polymyxin-based combinations against multidrug-resistant (including polymyxin-resistant), carbapenemase-producing Klebsiella pneumoniae Monotherapies and double- and triple-combination therapies were compared to identify the most efficacious treatment using static time-kill studies (24 h, six isolates), an in vitro pharmacokinetic/pharmacodynamic model (IVM; 48 h, two isolates), and the mouse thigh infection model (24 h, six isolates). In static time-kill studies, all monotherapies (polymyxin B, rifampin, amikacin, meropenem, or minocycline) were ineffective. Initial bacterial killing was enhanced with various polymyxin B-containing double combinations; however, substantial regrowth occurred in most cases by 24 h. Most polymyxin B-containing triple combinations provided greater and more sustained killing than double combinations. Standard dosage regimens of polymyxin B (2.5 mg/kg of body weight/day), rifampin (600 mg every 12 h), and amikacin (7.5 mg/kg every 12 h) were simulated in the IVM. Against isolate ATH 16, no viable bacteria were detected across 5 to 25 h with triple therapy, with regrowth to ∼2-log10 CFU/ml occurring at 48 h. Against isolate BD 32, rapid initial killing of ∼3.5-log10 CFU/ml at 5 h was followed by a slow decline to ∼2-log10 CFU/ml at 48 h. In infected mice, polymyxin B monotherapy (60 mg/kg/day) generally was ineffective. With triple therapy (polymyxin B at 60 mg/kg/day, rifampin at 120 mg/kg/day, and amikacin at 300 mg/kg/day), at 24 h there was an ∼1.7-log10 CFU/thigh reduction compared to the starting inoculum for all six isolates. Our results demonstrate that the polymyxin B-rifampin-amikacin combination significantly enhanced in vitro and in vivo bacterial killing, providing important information for the optimization of polymyxin-based combinations in patients.


Assuntos
Klebsiella pneumoniae , Polimixinas , Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Sinergismo Farmacológico , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Polimixina B/farmacologia , Polimixinas/farmacologia , beta-Lactamases/genética , beta-Lactamases/farmacologia
14.
Adv Exp Med Biol ; 1145: 251-288, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31364082

RESUMO

Combinations of antimicrobial agents are often used in the management of infectious diseases. Antimicrobial agents used as part of combination therapy are often selected empirically. As regrowth and the emergence of polymyxin (either colistin or polymyxin B) resistance has been observed with polymyxin monotherapy, polymyxin combination therapy has been suggested as a possible means by which to increase antimicrobial activity and reduce the development of resistance. This chapter provides an overview of preclinical and clinical investigations of CMS/colistin and polymyxin B combination therapy. In vitro data and animal model data suggests a potential clinical benefit with many drug combinations containing clinically achievable concentrations of polymyxins, even when resistance to one or more of the drugs in combination is present and including antibiotics normally inactive against Gram-negative organisms. The growing body of data on the emergence of polymyxin resistance with monotherapy lends theoretical support to a benefit with combination therapy. Benefits include enhanced bacterial killing and a suppression of polymyxin resistant subpopulations. However, the complexity of the critically ill patient population, and high rates of treatment failure and death irrespective of infection-related outcome make demonstrating a potential benefit for polymyxin combinations extremely challenging. Polymyxin combination therapy in the clinic remains a heavily debated and controversial topic. When combinations are selected, optimizing the dosage regimens for the polymyxin and the combinatorial agent is critical to ensure that the benefits outweigh the risk of the development of toxicity. Importantly, patient characteristics, pharmacokinetics, the site of infection, pathogen and resistance mechanism must be taken into account to define optimal and rational polymyxin combination regimens in the clinic.


Assuntos
Antibacterianos/farmacologia , Polimixinas/farmacologia , Colistina , Quimioterapia Combinada , Humanos , Testes de Sensibilidade Microbiana , Polimixina B
15.
Antibiotics (Basel) ; 8(2)2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-31013818

RESUMO

The manuscripts contained in this special edition of Antibiotics represent a current review of the polymyxins as well as highlights from the 3rd International Polymyxin Conference, which was held in Madrid, Spain, April 25 to 26, 2018. The role of the polymyxin antibiotics has evolved over time based on the availability of alternative agents. After high rates of nephrotoxicity caused the drug class to fall out of favor, polymyxins were once against utilized in the 21st century to combat drug-resistant pathogens. However, the introduction of safer agents with activity against drug-resistant organisms has brought the future utility of polymyxins into question. The present review investigates the future niche of polymyxins by evaluating currently available and future treatment options for difficult-to-treat pathogens. The introduction of ceftazidime-avibactam, meropenem-vaborbactam and plazomicin are likely to decrease polymyxin utilization for infections caused by Enterobacteriaceae. Similarly, the availability of ceftolozane-tazobactam will reduce the use of polymyxins to counter multidrug-resistant Pseudomonas aeruginosa. In contrast, polymyxins will likely continue be an important option for combatting carbapenem-resistant Acinetobacter baumannii until better options become commercially available. Measuring polymyxin concentrations in patients and individualizing therapy may be a future strategy to optimize clinical outcomes while minimizing nephrotoxicity. Inhaled polymyxins will continue to be an adjunctive option for pulmonary infections but further clinical trials are needed to clarify the efficacy of inhaled polymyxins. Lastly, safer polymyxin analogs will potentially be an important addition to the antimicrobial armamentarium.

16.
Artigo em Inglês | MEDLINE | ID: mdl-30988147

RESUMO

There is a great need for efficacious therapies against Gram-negative bacteria. Double ß-lactam combination(s) (DBL) are relatively safe, and preclinical data are promising; however, their clinical role has not been well defined. We conducted a metaanalysis of the clinical and microbiological efficacy of DBL compared to ß-lactam plus aminoglycoside combinations (BLAG). PubMed, Embase, ISI Web of Knowledge, and Cochrane Controlled Trials Register database were searched through July 2018. We included randomized controlled clinical trials that compared DBL with BLAG combinations. Clinical response was used as the primary outcome and microbiological response in Gram-negative bacteria as the secondary outcome; sensitivity analyses were performed for Pseudomonas aeruginosa, Klebsiella spp., and Escherichia coli Heterogeneity and risk of bias were assessed. Safety results were classified by systems and organs. Thirteen studies evaluated 2,771 cases for clinical response and 665 cases for microbiological response in various Gram-negative species. DBL achieved slightly, but not significantly, better clinical response (risk ratio, 1.05; 95% confidence interval [CI], 0.99 to 1.11) and microbiological response in Gram-negatives (risk ratio, 1.11; 95% CI, 0.99 to 1.25) compared with BLAG. Sensitivity analyses by pathogen showed the same trend. No significant heterogeneity across studies was found. DBL was significantly safer than BLAG regarding renal toxicity (6.6% versus 8.8%, P = 0.0338) and ototoxicity (0.7 versus 3.1%, P = 0.0137). Other adverse events were largely comparable. Overall, empirically designed DBL showed comparable clinical and microbiological responses across different Gram-negative species, and were significantly safer than BLAG. Therefore, DBL should be rationally optimized via the latest translational approaches, leveraging mechanistic insights and newer ß-lactams for future evaluation in clinical trials.


Assuntos
Aminoglicosídeos/uso terapêutico , Antibacterianos/uso terapêutico , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , beta-Lactamas/uso terapêutico , Quimioterapia Combinada , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Tobramicina/uso terapêutico , Resultado do Tratamento
17.
Infect Dis (Lond) ; 51(4): 287-292, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30760062

RESUMO

Infectious complications following surgical valve replacements are extremely difficult to treat, often requiring prolonged antimicrobials therapy with or without surgery. Vancomycin-intermediate Staphylococcus aureus is an infrequent pathogen, with an estimated prevalence of less than 0.3%, but presents even greater challenges. We report a case of successful cure of daptomycin-non-susceptible and vancomycin-intermediate Staphylococcus aureus prosthetic valve endocarditis using an eight-week course of combination antimicrobial therapy. Using time-kill study, the combination of daptomycin plus ceftaroline and rifampin resulted in a greater than 4 log reduction of bacterial growth at 24 hours. This antimicrobial combination was used for a total of eight weeks with a successful outcome.


Assuntos
Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana Múltipla , Endocardite Bacteriana/tratamento farmacológico , Próteses Valvulares Cardíacas/microbiologia , Infecções Relacionadas à Prótese/tratamento farmacológico , Idoso , Valva Aórtica/microbiologia , Valva Aórtica/cirurgia , Daptomicina/farmacologia , Sinergismo Farmacológico , Quimioterapia Combinada , Humanos , Masculino , Testes de Sensibilidade Microbiana , Infecções Relacionadas à Prótese/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Resultado do Tratamento , Vancomicina/farmacologia
18.
Pharmacotherapy ; 39(1): 10-39, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30710469

RESUMO

The polymyxin antibiotics colistin (polymyxin E) and polymyxin B became available in the 1950s and thus did not undergo contemporary drug development procedures. Their clinical use has recently resurged, assuming an important role as salvage therapy for otherwise untreatable gram-negative infections. Since their reintroduction into the clinic, significant confusion remains due to the existence of several different conventions used to describe doses of the polymyxins, differences in their formulations, outdated product information, and uncertainties about susceptibility testing that has led to lack of clarity on how to optimally utilize and dose colistin and polymyxin B. We report consensus therapeutic guidelines for agent selection and dosing of the polymyxin antibiotics for optimal use in adult patients, as endorsed by the American College of Clinical Pharmacy (ACCP), Infectious Diseases Society of America (IDSA), International Society of Anti-Infective Pharmacology (ISAP), Society for Critical Care Medicine (SCCM), and Society of Infectious Diseases Pharmacists (SIDP). The European Society for Clinical Microbiology and Infectious Diseases (ESCMID) endorses this document as a consensus statement. The overall conclusions in the document are endorsed by the European Committee on Antimicrobial Susceptibility Testing (EUCAST). We established a diverse international expert panel to make therapeutic recommendations regarding the pharmacokinetic and pharmacodynamic properties of the drugs and pharmacokinetic targets, polymyxin agent selection, dosing, dosage adjustment and monitoring of colistin and polymyxin B, use of polymyxin-based combination therapy, intrathecal therapy, inhalation therapy, toxicity, and prevention of renal failure. The treatment guidelines provide the first ever consensus recommendations for colistin and polymyxin B therapy that are intended to guide optimal clinical use.


Assuntos
Antibacterianos/administração & dosagem , Colistina/administração & dosagem , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Polimixina B/administração & dosagem , Adulto , Antibacterianos/efeitos adversos , Antibacterianos/farmacologia , Colistina/efeitos adversos , Colistina/farmacologia , Relação Dose-Resposta a Droga , Humanos , Polimixina B/efeitos adversos , Polimixina B/farmacologia , Terapia de Salvação/métodos
19.
Clin Pharmacokinet ; 58(2): 143-156, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29936678

RESUMO

The pharmacokinetics (PK) of ß-lactam antibiotics in cystic fibrosis (CF) patients has been compared with that in healthy volunteers for over four decades; however, no quantitative models exist that explain the PK differences between CF patients and healthy volunteers in older and newer studies. Our aims were to critically evaluate these studies and explain the PK differences between CF patients and healthy volunteers. We reviewed all 16 studies that compared the PK of ß-lactams between CF patients and healthy volunteers within the same study. Analysis of covariance (ANCOVA) models were developed. In four early studies that compared adolescent, lean CF patients with adult healthy volunteers, clearance (CL) in CF divided by that in healthy volunteers was 1.72 ± 0.90 (average ± standard deviation); in four additional studies comparing age-matched (primarily adult) CF patients with healthy volunteers, this ratio was 1.46 ± 0.16. The CL ratio was 1.15 ± 0.11 in all eight studies that compared CF patients and healthy volunteers who were matched in age, body size and body composition, or that employed allometric scaling by lean body mass (LBM). Volume of distribution was similar between subject groups after scaling by body size. For highly protein-bound ß-lactams, the unbound fraction was up to 2.07-fold higher in older studies that compared presumably sicker CF patients with healthy volunteers. These protein-binding differences explained over half of the variance for the CL ratio (p < 0.0001, ANCOVA). Body size, body composition and lower protein binding in presumably sicker CF patients explained the PK alterations in this population. Dosing CF patients according to LBM seems suitable to achieve antibiotic target exposures.


Assuntos
Antibacterianos/farmacocinética , Fibrose Cística/metabolismo , beta-Lactamas/farmacocinética , Humanos
20.
Eur J Pharm Sci ; 122: 341-346, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-30026170

RESUMO

The unbound fraction of a drug in plasma can profoundly influence both its pharmacokinetics and pharmacodynamics. For most drugs, the unbound fraction is relatively constant across the clinically relevant range of concentrations in a given individual. Nonlinear plasma protein binding involving saturation of binding sites results in increasing unbound fraction as the concentration of the drug increases, a phenomenon that is consistent with the law of mass action and is well recognized. Not widely appreciated is that some drugs undergo atypical concentration-dependent binding to plasma proteins, whereby the unbound fraction decreases with increasing concentration. In this article we review the drugs for which atypical nonlinear plasma protein binding has been reported. For each drug, the evidence for the phenomenon is presented and the proposed mechanism discussed. Also reviewed are the potential implications of atypical nonlinearity in plasma protein binding. Highlighted is the importance of understanding the relationship between unbound fraction and plasma drug concentration during the preclinical and early clinical stages of drug development, and during the routine clinical use of a drug especially if therapeutic drug monitoring is used to assist in optimization of the dosing regimen. The lesson is that the unexpected concentration-dependent behavior that has been observed for a number of drugs should be expected to occur for some other drugs.


Assuntos
Proteínas Sanguíneas/metabolismo , Preparações Farmacêuticas/metabolismo , Animais , Humanos , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...