Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 242: 120299, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37441869

RESUMO

Thermophilic anaerobic digestion (TAD) provides a promising solution for sustainable high-strength waste treatment due to its enhanced methane-rich biogas recovery. However, high organic loading rates (OLR) exceeding 3.0 kgCOD/m3/day and short hydraulic retention times (HRT) below 10 days pose challenges in waste-to-energy conversion during TAD, stemming from volatile fatty acids (VFAs) accumulation and methanogenesis failure. In this study, we implemented a stepwise strategy for acclimatizing waste activated sludge (WAS) in a thermophilic anaerobic fixed-bed biofilm reactor (TA-FBBR) to optimize methanogen populations, thereby enhancing waste-to-energy efficiencies under elevated OLRs in food waste treatment. Results showed that following stepwise acclimatization, the TA-FBBR achieved stable methane production of approximately 5.8 L/L-reactor/day at an ultrahigh OLR of ∼20 kgCOD/m3/day and ∼15 kgVS/m3/day at 6-day HRT in food waste treatment. The average methane yield reached 0.45 m3/kgCODremoval, attaining the theoretical production in TAD. Moreover, VFA concentrations were stabilized below 1000 mg/L at the ultrahigh OLR under 6-day HRT, while maintaining an acetate/propionate ratio of > 1.8 and a VFA/TAK ratio of < 0.3 serving as effective indicators of system stability and methane yield potential. The microbial community analysis revealed that the WAS acclimatization strategy fostered the microbial diversity and abundance of Methanothermobacter and Methanosarcina. Methanosarcina in the biofilm were observed to be twice as abundant as Methanothermobacter, indicating a potential preference for biofilm existence among methanogens. The findings demonstrated an effective strategy, specifically the stepwise acclimatization of WAS in a thermophilic fixed-bed biofilm reactor, to enhance the food waste treatment performance at high OLRs, contributing valuable mechanistic and technical insights for future sustainable high-strength waste management.


Assuntos
Eliminação de Resíduos , Esgotos , Alimentos , Anaerobiose , Biocombustíveis , Metano , Biofilmes , Reatores Biológicos
2.
Biomedicines ; 10(9)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36140390

RESUMO

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak has had a significant impact on public health and the global economy. Several diagnostic tools are available for the detection of infectious diseases, with reverse transcription-polymerase chain reaction (RT-PCR) testing specifically recommended for viral RNA detection. However, this diagnostic method is costly, complex, and time-consuming. Although it does not have sufficient sensitivity, antigen detection by an immunoassay is an inexpensive and simpler alternative to RT-PCR. Here, we developed an ultrahigh sensitivity digital immunoassay (d-IA) for detecting SARS-CoV-2 nucleocapsid (N) protein as antigens using a fully automated desktop analyzer based on a digital enzyme-linked immunosorbent assay. METHODS: We developed a fully automated d-IA desktop analyzer and measured the viral N protein as an antigen in nasopharyngeal (NP) swabs from patients with coronavirus disease. We studied nasopharyngeal swabs of 159 and 88 patients who were RT-PCR-negative and RT-PCR-positive, respectively. RESULTS: The limit of detection of SARS-CoV-2 d-IA was 0.0043 pg/mL of N protein. The cutoff value was 0.029 pg/mL, with a negative RT-PCR distribution. The sensitivity of RT-PCR-positive specimens was estimated to be 94.3% (83/88). The assay time was 28 min. CONCLUSIONS: Our d-IA system, which includes a novel fully automated desktop analyzer, enabled detection of the SARS-CoV-2 N-protein with a comparable sensitivity to RT-PCR within 30 min. Thus, d-IA shows potential for SARS-CoV-2 detection across multiple diagnostic centers including small clinics, hospitals, airport quarantines, and clinical laboratories.

3.
Cytotechnology ; 59(2): 135-41, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19484373

RESUMO

The effects of heat treatment and concentration of fish serum (FS) on cell growth and human granulocyte-macrophage colony-stimulating factor (hGM-CSF) production in an adhesion culture of recombinant Chinese hamster ovary (CHO) cells, DR1000L4N, were investigated. The addition of heat treated FS instead of non-heat-treated FS improved cell growth in terms of cell density, which reached 60% that in 10% fetal calf serum (FCS)-containing medium (FCS medium). A decrease in FS concentration from 10 to 1.25% markedly increased cell density, which was 79% that in 10% FCS medium. The combination of heat treatment at 56 degrees C and the addition of FS at a low concentration (1.25%) showed an additive effect on cell growth and resulted in the same cell density as that in 10% FCS medium, whereas the hGM-CSF concentration in the culture using FS-containing medium (FS medium) was approximately 50% that in 10% FCS medium. The total lipid concentration in FS was more than three fold that in FCS. The effect of decreasing FS concentration on cell growth may be due to the low lipid concentration in FS medium, because addition of the lipids extracted from FS to 10% FCS and 1.25% FS media markedly decreased cell density. Consequently, the addition of heat-treated FS at low concentrations to medium may be useful for the growth of CHO cells without FCS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...