Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Biochem Biophys Res Commun ; 568: 167-173, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34237486

RESUMO

Lysophosphatidic acid (LPA) plays a critical role in developing and maintaining chronic pain in various animal models. Previous studies have reported that cytosolic and calcium-independent phospholipase A2 (PLA2) is involved in the LPA receptor-mediated amplification of LPA production in the spinal dorsal horn (SDH) after nerve injury, while the involvement of secreted PLA2 (sPLA2) remains unclear. The present study revealed that only sPLA2 -III among 11 species of PLA2 showed a significant upregulation of gene expression in the SDH. Intraspinal injection of adeno-associated virus-miRNA targeting sPLA2-III prevented hyperalgesia and unique hypoalgesia in mice treated with partial sciatic nerve ligation. In addition, intrathecal treatment with antisense oligodeoxynucleotide or siRNA targeting sPLA2-III significantly reversed the established thermal hyperalgesia. In the high-throughput screening of sPLA2-III inhibitors from the chemical library, we identified two hit compounds. Through in vitro characterization of PLA2 inhibitor profiles and in vivo assessment of the anti-hyperalgesic effects of known PLA2 inhibitors as well as hit compounds, sPLA2-III was found to be a novel therapeutic target molecule for the treatment of Neuropathic pain.


Assuntos
Fosfolipases A2 do Grupo III/metabolismo , Neuralgia/metabolismo , Animais , Expressão Gênica , Técnicas de Silenciamento de Genes , Fosfolipases A2 do Grupo III/genética , Masculino , Camundongos Endogâmicos C57BL , Neuralgia/genética , Neuralgia/terapia , Regulação para Cima
2.
Cell Signal ; 82: 109951, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33592249

RESUMO

Lipid-protein interactions play essential roles in many biological phenomena. Lysophospholipid mediators, such as cyclic phosphatidic acid (cPA), have been recognized as secondary messengers, yet few cellular targets for cPA have been identified to date. Furthermore, the molecular mechanism that activates these downstream signaling events remains unknown. In this study, using metabolically stabilized cPA carba-derivative (2ccPA)-immobilized magnetic beads, we identified adenine nucleotide translocase 2 (ANT2) as a 2ccPA-interacting protein in microglial cells. 2ccPA was tested for its ability to inhibit apoptosis caused by phenylarsine oxide in microglial cells. This damage was significantly improved upon 2ccPA treatment, along with cell proliferation, apoptosis, reactive oxygen species production, and intracellular ATP levels. This is the first report to suggest the direct binding of 2ccPA to ANT2 in microglial cells and provides evidence for a new benefit of 2ccPA in protecting microglial cells from apoptotic death induced by the ANT2-mediated signaling pathway.


Assuntos
Microglia , Translocases Mitocondriais de ADP e ATP/fisiologia , Ácidos Fosfatídicos/metabolismo , Animais , Apoptose , Linhagem Celular , Proliferação de Células , Camundongos , Microglia/citologia , Microglia/metabolismo , Espécies Reativas de Oxigênio/metabolismo
3.
Prostaglandins Other Lipid Mediat ; 150: 106450, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32298781

RESUMO

Cyclic phosphatidic acid (cPA) is a lysophospholipid mediator that suppresses cancer metastasis and osteoarthritis. It also has neuroprotective roles in diseases such as multiple sclerosis and delayed neuronal death following transient ischemia. In order to take advantage of the properties of cPA for the development of new therapeutic strategies, we have synthesized several cPA derivatives and discovered 2-carba-cPA (2ccPA) as a promising candidate. To develop 2ccPA as a therapeutic agent, we investigated the pharmacokinetic profile of 2ccPA by liquid chromatography-triple quadrupole mass spectrometry in this study. When 2ccPA was administered intraperitoneally to mice at a dose of 1.6 mg/kg, the half-life of 2ccPA in plasma was 16 min. The 2ccPA, dosed intraperitoneally to mice at 16 mg/kg, distributed to each organ including brain at 20 min after dosing. It was found that 2ccPA was stable in neutral or alkaline conditions (e.g., intestine) but unstable in acidic conditions (e.g., stomach). When 2ccPA was orally administrated to rats as a gastro-resistant form using an enterosoluble capsule, plasma 2ccPA levels peaked at 2 h, slowly declined thereafter and persistently detected even at 10 h after administration. Here, we present the findings on the effect of the continuous release of 2ccPA from the capsule to reduce the lysophospholipase D activity and also decrease plasma levels of lysophosphatidic acid in rat. These findings will be useful in further studies for evaluating the application of 2ccPA in several disorders.


Assuntos
Ácidos Fosfatídicos/farmacocinética , Animais , Cromatografia Líquida/métodos , Masculino , Espectrometria de Massas/métodos , Camundongos , Camundongos Endogâmicos C57BL , Ácidos Fosfatídicos/administração & dosagem , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
4.
Peptides ; 107: 10-16, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30040980

RESUMO

Kyotorphin is a unique biologically active neuropeptide (l-tyrosine-l-arginine), which is reported to have opioid-like analgesic actions through a release of Met-enkephalin from the brain slices. N-methyl-l-tyrosine-l-arginine (NMYR), an enzymatically stable mimetic of kyotorphin, successfully caused potent analgesic effects in thermal and mechanical nociception tests in mice when it was given through systemic routes. NMYR analgesia was abolished in µ-opioid receptor-deficient (MOP-KO) mice, and by intracerebroventricular (i.c.v.) injection of naloxone and of N-methyl l-leucine-l-arginine (NMLR), a kyotorphin receptor antagonist. In the Ca2+-mobilization assay using CHO cells expressing Gαqi5 and hMOPr or hDOPr, however, the addition of kyotorphin neither activated MOPr-mechanisms, nor affected the concentration-dependent activation of DAMGO- or Met-Enkephalin-induced MOPr activation, and Met-enkephalin-induced DOPr activation. NMYR-analgesia was significantly attenuated in preproenkephalin (PENK)- or proopioimelanocortin (POMC)-KO mice. The systemic administration of arginine, which is reported to elevate the level of endogenous kyotorphin selectively in midbrain and medulla oblongata, pain-related brain regions, caused significant analgesia, and the analgesia was reversed by i.c.v. injection of NMLR or naloxone. In addition, PENK- and POMC-KO mice also attenuated the arginine-induced analgesia. All these findings suggest that NMYR and arginine activate brain kyotorphin receptor in direct and indirect manner, respectively and both compounds indirectly cause the opioid-like analgesia through the action of endogenous opioid peptides.


Assuntos
Arginina/farmacologia , Encefalinas/genética , Neuropeptídeos/farmacologia , Dor/genética , Pró-Opiomelanocortina/genética , Precursores de Proteínas/genética , Analgésicos/farmacologia , Animais , Células CHO , Cricetulus , Encefalinas/fisiologia , Técnicas de Inativação de Genes , Camundongos , Camundongos Endogâmicos C57BL , Dor/metabolismo , Manejo da Dor , Pró-Opiomelanocortina/fisiologia , Precursores de Proteínas/fisiologia
5.
Pain ; 159(11): 2170-2178, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29939962

RESUMO

We have previously demonstrated that lysophosphatidic acid (LPA) plays key roles in the initial mechanisms for neuropathic pain (NeuP) development. Here, we examined whether LPA receptor mechanisms and LPA production are related to the glial activation at a late stage after partial sciatic nerve ligation (pSNL) by use of microglial inhibitor, Mac1-saporin or astrocyte inhibitor, and L-α-aminoadipate (L-AA). Although single intrathecal injection of LPA1/3 antagonist, Ki-16425 did not affect the pain threshold at day 7 after the spinal cord injury, repeated treatments of each compound gradually reversed the basal pain threshold to the control level. The intrathecal administration of a microglia inhibitor, Mac-1-saporin reversed the late hyperalgesia and LPA production at day 14 after the pSNL, whereas L-AA inhibited the hyperalgesia, but had no effect on LPA production. The involvement of LPA receptors in astrocyte activation in vivo was evidenced by the findings that Ki-16425 treatments abolished the upregulation of CXCL1 in activated astrocytes in the spinal dorsal horn of mice at day 14 after the pSNL, and that Ki-16425 reversed the LPA-induced upregulation of several chemokine gene expressions in primary cultured astrocytes. Finally, we found that significant hyperalgesia was observed with intrathecal administration of primary cultured astrocytes, which had been stimulated by LPA in a Ki-16425-reversible manner. All these findings suggest that LPA production and LPA1/3 receptor activation through differential glial mechanisms play key roles in the maintenance as well as initiation mechanisms in NeuP.


Assuntos
Astrócitos/efeitos dos fármacos , Lisofosfolipídeos/farmacologia , Neuralgia/etiologia , Neuralgia/patologia , Neuropatia Ciática/complicações , Ácido 2-Aminoadípico/farmacologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Medição da Dor , Limiar da Dor/efeitos dos fármacos , Piridinas/farmacologia , RNA Mensageiro/metabolismo , Medula Espinal/citologia , Regulação para Cima/efeitos dos fármacos
6.
J Pharmacol Sci ; 136(2): 93-96, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29409686

RESUMO

Lysophosphatidic acid (LPA) and LPA1 receptor signaling play a crucial role in the initiation of peripheral nerve injury-induced neuropathic pain through the alternation of pain-related genes/proteins expression and demyelination. However, LPA and its signaling in the brain are still poorly understood. In the present study, we revealed that the LPA5 receptor expression in corpus callosum elevated after the initiation of demyelination, and the hyperalgesia through Aδ-fibers following cuprizone-induced demyelination was mediated by LPA5 signaling. These data suggest that LPA5 signaling may play a key role in the mechanisms underlying neuropathic pain following demyelination in the brain.


Assuntos
Cuprizona/efeitos adversos , Modelos Animais de Doenças , Esclerose Múltipla/etiologia , Esclerose Múltipla/genética , Neuralgia/etiologia , Neuralgia/genética , Receptores de Ácidos Lisofosfatídicos/fisiologia , Transdução de Sinais/fisiologia , Animais , Corpo Caloso/metabolismo , Feminino , Expressão Gênica , Lisofosfolipídeos/fisiologia , Masculino , Camundongos Endogâmicos , Esclerose Múltipla/metabolismo , Receptores de Ácidos Lisofosfatídicos/genética , Receptores de Ácidos Lisofosfatídicos/metabolismo
7.
Mol Cell Endocrinol ; 473: 100-113, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29355589

RESUMO

Alkyl-glycerophosphate (AGP) accumulates in atherogenic oxidized-LDL and human atherosclerotic plaques and is a potent agonist of peroxisome-proliferator-activated receptor-gamma (PPARγ). Recent studies suggest a potential regulatory role for PPARγ in endothelial nitric oxide synthase (eNOS) expression/activation and nitrogen oxide (NO) generation in the vascular endothelium. Importantly, eNOS-induced NO and advanced glycation end-products (AGEs) are involved in blood-vessel damage, and diabetic patients exhibit high serum NO and AGE levels; however, the effect of AGP on NO- and AGE-mediated endothelium dysfunction remains unknown. Investigation of the AGP-specific effects on NO- and AGE-mediated dysfunction and the underlying molecular mechanisms revealed that AGP upregulated eNOS expression and NO production, and that eNOS silencing and PPARγ antagonism inhibited AGP-mediated eNOS upregulation and NO production. Moreover, AGP-PPARγ-axis-mediated NO production promoted the generation of reactive oxygen species and AGE formation. These results suggested that AGP plays a significant role in the initiation/progression of diabetes-related atherosclerosis through PPARγ activation.


Assuntos
Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Glicerofosfatos/metabolismo , Estresse Oxidativo , PPAR gama/metabolismo , Animais , Apolipoproteínas E/deficiência , Apoptose/efeitos dos fármacos , Antígenos CD36/metabolismo , Artérias Carótidas/patologia , Moléculas de Adesão Celular/metabolismo , Células Cultivadas , Dieta Hiperlipídica , Células Endoteliais/efeitos dos fármacos , Humanos , Lipoproteínas LDL/farmacologia , Camundongos Endogâmicos BALB C , Camundongos Knockout , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Depuradores Classe E/metabolismo
8.
J Pharmacol Sci ; 132(2): 162-165, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27681370

RESUMO

Lysophosphatidic acid (LPA) initiates demyelination following peripheral nerve injury, which causes neuropathic pain. Our previous in vivo and ex vivo studies using mice have demonstrated that LPA-induced demyelination of spinal dorsal roots is attributed by the LPA1-type receptor-mediated down-regulation of myelin-related molecules, such as MBP and MPZ. In this study using S16 mature-type Schwann cells, we found that LPA-induced down-regulation of myelin-related genes is attributed by the activation of LPA1 receptor, Rho kinase, and p300, leading to an acetylation of NFκB, which down-regulates the transcription of Sox10, MBP and MPZ genes.


Assuntos
Inativação Gênica/fisiologia , Bainha de Mielina/metabolismo , NF-kappa B/metabolismo , Receptores de Ácidos Lisofosfatídicos/fisiologia , Células de Schwann/metabolismo , Quinases Associadas a rho/fisiologia , Acetilação , Animais , Linhagem Celular , Camundongos , Bainha de Mielina/genética
9.
Mol Cell Endocrinol ; 412: 320-9, 2015 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-26007326

RESUMO

Atherosclerosis is a disease characterized by building up plaques formation and leads to a potentially serious condition in which arteries are clogged by fatty substances such as cholesterol. Increasing evidence suggests that atherosclerosis is accelerated in type 2 diabetes. Recent study reported that high level of alkyl glycerophosphate (AGP) was accumulated in atherosclerotic lesions. The presence of this phospholipid in mildly oxidized low-density lipoprotein (LDL) is likely to be involved in atherogenesis. It has been reported that the activation of peroxisome proliferator-activated receptor gamma plays a key role in developing atherosclerosis. Our previous result indicates that cyclic phosphatidic acid (cPA), one of bioactive lipids, potently suppresses neointima formation by inhibiting the activation of peroxisome proliferator-activated receptor gamma (PPARγ). However, the detailed mechanism is still unclear. In this study, to elucidate the mechanism of the cPA-PPARγ axis in the coronary artery endothelium, especially in patients with type 2 diabetes, we investigated the proliferation, migration, and secretion of VEGF in human coronary artery endothelial cells from diabetes patients (D-HCAECs). AGP induced cell growth and migration; however, cPA suppressed the AGP-elicited growth and migration in D-HCAECs. Moreover, AGP increased VEGF secretion from D-HCAECs, and this event was attenuated by cPA. Taken together, these results suggest that cPA suppresses VEGF-stimulated growth and migration in D-HCAECs. These findings could be important for regulatory roles of PPARγ and VEGF in the vascular processes associated with diabetes and atherosclerosis.


Assuntos
Vasos Coronários/patologia , Células Endoteliais/metabolismo , PPAR gama/fisiologia , Ácidos Fosfatídicos/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Aterosclerose/metabolismo , Aterosclerose/patologia , Movimento Celular , Proliferação de Células , Células Cultivadas , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Células Endoteliais/efeitos dos fármacos , Compostos Heterocíclicos com 1 Anel/farmacologia , Humanos
10.
Mol Cancer Res ; 13(1): 174-85, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25158955

RESUMO

UNLABELLED: Autotaxin (ENPP2/ATX) and lysophosphatidic acid (LPA) receptors represent two key players in regulating cancer progression. The present study sought to understand the mechanistic role of LPA G protein-coupled receptors (GPCR), not only in the tumor cells but also in stromal cells of the tumor microenvironment. B16F10 melanoma cells predominantly express LPA5 and LPA2 receptors but lack LPA1. LPA dose dependently inhibited invasion of cells across a Matrigel layer. RNAi-mediated knockdown of LPA5 relieved the inhibitory effect of LPA on invasion without affecting basal invasion. This suggests that LPA5 exerts an anti-invasive action in melanoma cells in response to LPA. In addition, both siRNA-mediated knockdown and pharmacologic inhibition of LPA2 reduced the basal rate invasion. Unexpectedly, when probing the role of this GPCR in host tissues, it was found that the incidence of melanoma-derived lung metastasis was greatly reduced in LPA5 knockout (KO) mice compared with wild-type (WT) mice. LPA1-KO but not LPA2-KO mice also showed diminished melanoma-derived lung metastasis, suggesting that host LPA1 and LPA5 receptors play critical roles in the seeding of metastasis. The decrease in tumor cell residence in the lungs of LPA1-KO and LPA5-KO animals was apparent 24 hours after injection. However, KO of LPA1, LPA2, or LPA5 did not affect the subcutaneous growth of melanoma tumors. IMPLICATIONS: These findings suggest that tumor and stromal LPA receptors, in particular LPA1 and LPA5, play different roles in invasion and the seeding of metastasis.


Assuntos
Neoplasias Pulmonares/genética , Melanoma Experimental/genética , Receptores de Ácidos Lisofosfatídicos/genética , Animais , Carcinogênese/genética , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Melanoma Experimental/patologia , Camundongos , Camundongos Knockout , Invasividade Neoplásica/genética , Metástase Neoplásica , Diester Fosfórico Hidrolases/genética , Transdução de Sinais/genética , Microambiente Tumoral
11.
FEBS Open Bio ; 4: 947-51, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25426414

RESUMO

Fatty-acid-binding protein 3, muscle and heart (FABP3), also known as heart-type FABP, is a member of the family of intracellular lipid-binding proteins. It is a small cytoplasmic protein with a molecular mass of about 15 kDa. FABPs are known to be carrier proteins for transporting fatty acids and other lipophilic substances from the cytoplasm to the nucleus, where these lipids are released to a group of nuclear receptors such as peroxisome proliferator-activated receptors (PPARs). In this study, using lysophosphatidic acid (LPA)-coated agarose beads, we have identified FABP3 as an LPA carrier protein in human coronary artery endothelial cells (HCAECs). Administration of LPA to HCAECs resulted in a dose-dependent increase in PPARγ activation. Furthermore, the LPA-induced PPARγ activation was abolished when the FABP3 expression was reduced using small interfering RNA (siRNA). We further show that the nuclear fraction of control HCAECs contained a significant amount of exogenously added LPA, whereas FABP3 siRNA-transfected HCAECs had a decreased level of LPA in the nucleus. Taken together, these results suggest that FABP3 governs the transcriptional activities of LPA by targeting them to cognate PPARγ in the nucleus.

12.
Mol Pain ; 10: 52, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-25123228

RESUMO

BACKGROUND: Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator with a unique cyclic phosphate ring at the sn-2 and sn-3 positions of its glycerol backbone. Natural cPA and its chemically stabilized cPA derivative, 2-carba-cPA (2ccPA), inhibit chronic and acute inflammation, and 2ccPA attenuates neuropathic pain. Osteoarthritis (OA) is a degenerative disease frequently associated with symptoms such as inflammation and joint pain. Because 2ccPA has obvious antinociceptive activity, we hypothesized that 2ccPA might relieve the pain caused by OA. We aimed to characterize the effects of 2ccPA on the pathogenesis of OA induced by total meniscectomy in the rabbit knee joint. RESULTS: Intra-articular injection of 2ccPA (twice a week for 42 days) significantly reduced pain and articular swelling. Histopathology showed that 2ccPA suppressed cartilage degeneration in OA. We also examined the effects of 2ccPA on the inflammatory and catabolic responses of human OA synoviocytes and chondrosarcoma SW1353 cells in vitro. 2ccPA stimulated synthesis of hyaluronic acid and suppressed production of the metalloproteinases MMP-1, -3, and -13. However, it had no effect on the production of interleukin (IL)-6, an inflammatory cytokine. The suppressive effect of 2ccPA on MMP-1 and -3 production in synoviocytes and on MMP-13 production in SW1353 cells was not mediated by the lysophosphatidic acid receptor, LPA1 receptor (LPA1R). CONCLUSIONS: Our results suggest that 2ccPA significantly reduces the pain response to OA by inducing hyaluronic acid production and suppressing MMP-1, -3, and -13 production in synoviocytes and chondrocytes.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Osteoartrite/tratamento farmacológico , Ácidos Fosfatídicos/uso terapêutico , Animais , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Edema/tratamento farmacológico , Edema/etiologia , Feminino , Seguimentos , Humanos , Isoxazóis/farmacologia , Cápsula Articular/citologia , Masculino , Pessoa de Meia-Idade , Osteoartrite/complicações , Osteoartrite/patologia , Medição da Dor , Propionatos/farmacologia , RNA Mensageiro/metabolismo , Coelhos , Membrana Sinovial/efeitos dos fármacos , Fatores de Tempo
13.
FEBS J ; 281(4): 1017-28, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24314137

RESUMO

Modulation of autotaxin (ATX), the lysophospholipase D enzyme that produces lysophosphatidic acid, with small-molecule inhibitors is a promising strategy for blocking the ATX-lysophosphatidic acid signaling axis. Although discovery campaigns have been successful in identifying ATX inhibitors, many of the reported inhibitors target the catalytic cleft of ATX. A recent study provided evidence for an additional inhibitory surface in the hydrophobic binding pocket of ATX, confirming prior studies that relied on enzyme kinetics and differential inhibition of substrates varying in size. Multiple hits from previous high-throughput screening for ATX inhibitors were obtained with aromatic sulfonamide derivatives interacting with the hydrophobic pocket. Here, we describe the development of a ligand-based strategy and its application in virtual screening, which yielded novel high-potency inhibitors that target the hydrophobic pocket of ATX. Characterization of the structure-activity relationship of these new inhibitors forms the foundation of a new pharmacophore model of the hydrophobic pocket of ATX.


Assuntos
Diester Fosfórico Hidrolases/química , Sulfonamidas/química , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular , Relação Estrutura-Atividade
14.
Mol Pharmacol ; 84(3): 415-24, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23793291

RESUMO

Autotaxin (ATX), a lysophospholipase D, plays an important role in cancer invasion, metastasis, tumor progression, tumorigenesis, neuropathic pain, fibrotic diseases, cholestatic pruritus, lymphocyte homing, and thrombotic diseases by producing the lipid mediator lysophosphatidic acid (LPA). A high-throughput screen of ATX inhibition using the lysophosphatidylcholine-like substrate fluorogenic substrate 3 (FS-3) and ∼10,000 compounds from the University of Cincinnati Drug Discovery Center identified several small-molecule inhibitors with IC50 vales ranging from nanomolar to low micromolar. The pharmacology of the three most potent compounds: 918013 (1; 2,4-dichloro-N-(3-fluorophenyl)-5-(4-morpholinylsulfonyl) benzamide), 931126 (2; 4-oxo-4-{2-[(5-phenoxy-1H-indol-2-yl)carbonyl]hydrazino}-N-(4-phenylbutan-2-yl)butanamide), and 966791 (3; N-(2,6-dimethylphenyl)-2-[N-(2-furylmethyl)(4-(1,2,3,4-tetraazolyl)phenyl)carbonylamino]-2-(4-hydroxy-3-methoxyphenyl) acetamide), were further characterized in enzyme, cellular, and whole animal models. Compounds 1 and 2 were competitive inhibitors of ATX-mediated hydrolysis of the lysophospholipase substrate FS-3. In contrast, compound 3 was a competitive inhibitor of both FS-3 and the phosphodiesterase substrate p-nitrophenyl thymidine 5'-monophosphate. Computational docking and mutagenesis suggested that compounds 1 and 2 target the hydrophobic pocket, thereby blocking access to the active site of ATX. The potencies of compounds 1-3 were comparable to each other in each of the assays. All of these compounds significantly reduced invasion of A2058 human melanoma cells in vitro and the colonization of lung metastases by B16-F10 murine melanoma cells in C57BL/6 mice. The compounds had no agonist or antagonist effects on select LPA or sphingosine 1-phosphate receptors, nor did they inhibit nucleotide pyrophosphatase/phosphodiesterase (NPP) enzymes NPP6 and NPP7. These results identify the molecular surface of the hydrophobic pocket of ATX as a target-binding site for inhibitors of enzymatic activity.


Assuntos
Antineoplásicos/química , Benzamidas/química , Benzenoacetamidas/química , Hidrazinas/química , Indóis/química , Inibidores de Fosfodiesterase/química , Diester Fosfórico Hidrolases/química , Sulfonamidas/química , Tetrazóis/química , Animais , Antineoplásicos/farmacologia , Benzamidas/farmacologia , Benzenoacetamidas/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Ensaios de Triagem em Larga Escala , Humanos , Hidrazinas/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Indóis/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/secundário , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Mutação , Invasividade Neoplásica , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Relação Estrutura-Atividade , Sulfonamidas/farmacologia , Tetrazóis/farmacologia
15.
Mol Cell ; 39(3): 421-32, 2010 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-20705243

RESUMO

Cyclic phosphatidic acid (1-acyl-2,3-cyclic-glycerophosphate, CPA), one of nature's simplest phospholipids, is found in cells from slime mold to humans and has a largely unknown function. We find here that CPA is generated in mammalian cells in a stimulus-coupled manner by phospholipase D2 (PLD2) and binds to and inhibits the nuclear hormone receptor PPARgamma with nanomolar affinity and high specificity through stabilizing its interaction with the corepressor SMRT. CPA production inhibits the PPARgamma target-gene transcription that normally drives adipocytic differentiation of 3T3-L1 cells, lipid accumulation in RAW264.7 cells and primary mouse macrophages, and arterial wall remodeling in a rat model in vivo. Inhibition of PLD2 by shRNA, a dominant-negative mutant, or a small molecule inhibitor blocks CPA production and relieves PPARgamma inhibition. We conclude that CPA is a second messenger and a physiological inhibitor of PPARgamma, revealing that PPARgamma is regulated by endogenous agonists as well as by antagonists.


Assuntos
Adipócitos/metabolismo , Macrófagos/metabolismo , PPAR gama/metabolismo , Ácidos Fosfatídicos/metabolismo , Fosfolipase D/metabolismo , Células 3T3-L1 , Animais , Diferenciação Celular/fisiologia , Camundongos , Correpressor 2 de Receptor Nuclear/genética , Correpressor 2 de Receptor Nuclear/metabolismo , PPAR gama/genética , Ácidos Fosfatídicos/genética , Fosfolipase D/genética , Ratos , Transcrição Gênica/fisiologia
16.
J Mol Graph Model ; 28(8): 828-33, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20356772

RESUMO

A structurally diverse dataset of 119 compounds was used to develop and validate a 2D binary QSAR model for the LPA(3) receptor. The binary QSAR model was generated using an activity threshold of greater than 15% inhibition at 10 microM. The overall accuracy of the model on the training set was 82%. It had accuracies of 55% for active and 91% for inactive compounds, respectively. The model was validated using an external test set of 10 compounds. The accuracy on the external test set was 60% overall, identifying three out of seven actives and all three inactive compounds. This model was combined with similarity searching to rapidly screen libraries and select 14 candidate LPA(3) antagonists. Experimental assays confirmed 13 of these (93%) met the 15% inhibition threshold defining actives. The successful application of the model to select candidates for screening demonstrates the power of this binary QSAR model to prioritize compound selection for experimental consideration.


Assuntos
Modelos Moleculares , Relação Quantitativa Estrutura-Atividade , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Receptores de Ácidos Lisofosfatídicos/química , Algoritmos , Bases de Dados Factuais , Estrutura Molecular , Receptores de Ácidos Lisofosfatídicos/genética , Reprodutibilidade dos Testes
17.
Bioorg Med Chem ; 17(21): 7457-64, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19800804

RESUMO

Compound 5 ([5-(3-nitrophenoxy)-1,3-dioxo-1,3-dihydro-2-isoindol-2-yl]acetic acid) was identified as a weak selective LPA(3) antagonist (IC(50)=4504 nM) in a virtual screening effort to optimize a dual LPA(2 and 3) antagonist. Structure-based drug design techniques were used to prioritize similarity search matches of compound 5. This strategy rapidly identified 10 novel antagonists. The two most efficacious compounds identified inhibit activation of the LPA(3) receptor by 200 nM LPA with IC(50) values of 752 nM and 2992 nM. These compounds additionally define changes to our previously reported pharmacophore that will improve its ability to identify more potent and selective LPA(3) receptor antagonists. The results of the combined computational and experimental screening are reported.


Assuntos
Isoindóis/química , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Sítios de Ligação , Simulação por Computador , Desenho de Fármacos , Isoindóis/síntese química , Isoindóis/farmacologia , Conformação Molecular , Receptores de Ácidos Lisofosfatídicos/metabolismo , Relação Estrutura-Atividade
18.
Cell Signal ; 21(12): 1874-84, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19709640

RESUMO

Lysophosphatidic acid (LPA) and its ether analog alkyl-glycerophosphate (AGP) elicit arterial wall remodeling when applied intralumenally into the uninjured carotid artery. LPA is the ligand of eight GPCRs and the peroxisome proliferator-activated receptor gamma (PPARgamma). We pursued a gene knockout strategy to identify the LPA receptor subtypes necessary for the neointimal response in a non-injury model of carotid remodeling and also compared the effects of AGP and the PPARgamma agonist rosiglitazone (ROSI) on balloon injury-elicited neointima development. In the balloon injury model AGP significantly increased neointima; however, rosiglitazone application attenuated it. AGP and ROSI were also applied intralumenally for 1h without injury into the carotid arteries of LPA(1), LPA(2), LPA(1&2) double knockout, and Mx1Cre-inducible conditional PPARgamma knockout mice targeted to vascular smooth muscle cells, macrophages, and endothelial cells. The neointima was quantified and also stained for CD31, CD68, CD11b, and alpha-smooth muscle actin markers. In LPA(1), LPA(2), LPA(1&2) GPCR knockout, Mx1Cre transgenic, PPARgamma(fl/-), and uninduced Mx1CrexPPARgamma(fl/-) mice AGP- and ROSI-elicited neointima was indistinguishable in its progression and cytological features from that of WT C57BL/6 mice. In PPARgamma(-/-) knockout mice, generated by activation of Mx1Cre-mediated recombination, AGP and ROSI failed to elicit neointima and vascular wall remodeling. Our findings point to a difference in the effects of AGP and ROSI between the balloon injury- and the non-injury chemically-induced neointima. The present data provide genetic evidence for the requirement of PPARgamma in AGP- and ROSI-elicited neointimal thickening in the non-injury model and reveal that the overwhelming majority of the cells in the neointimal layer express alpha-smooth muscle actin.


Assuntos
Lesões das Artérias Carótidas/tratamento farmacológico , Artéria Carótida Primitiva/efeitos dos fármacos , Lisofosfolipídeos/uso terapêutico , PPAR gama/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Lesões das Artérias Carótidas/patologia , Artéria Carótida Primitiva/patologia , Artéria Carótida Primitiva/ultraestrutura , Técnicas de Silenciamento de Genes , Glicerofosfatos/uso terapêutico , Hipoglicemiantes/uso terapêutico , Lisofosfolipídeos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , PPAR gama/agonistas , PPAR gama/genética , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/genética , Rosiglitazona , Tiazolidinedionas/uso terapêutico
19.
Cancer Res ; 69(13): 5441-9, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19509223

RESUMO

Signal transduction modifiers that modulate the lysophosphatidic acid (LPA) pathway have potential as anticancer agents. Herein, we describe metabolically stabilized LPA analogues that reduce cell migration and invasion and cause regression of orthotopic breast tumors in vivo. Two diastereoisomeric alpha-bromophosphonates (BrP-LPA) were synthesized, and the pharmacology was determined for five LPA G protein-coupled receptors (GPCRs). The syn and anti diastereomers of BrP-LPA are pan-LPA GPCR antagonists and are also nanomolar inhibitors of the lysophospholipase D activity of autotaxin, the dominant biosynthetic source of LPA. Computational models correctly predicted the diastereoselectivity of antagonism for three GPCR isoforms. The anti isomer of BrP-LPA was more effective than syn isomer in reducing migration of MDA-MB-231 cells, and the anti isomer was superior in reducing invasion of these cells. Finally, orthotopic breast cancer xenografts were established in nude mice by injection of MB-231 cells in an in situ cross-linkable extracellular matrix. After 2 weeks, mice were treated with the BrP-LPA alone (10 mg/kg), Taxol alone (10 mg/kg), or Taxol followed by BrP-LPA. All treatments significantly reduced tumor burden, and BrP-LPA was superior to Taxol in reducing blood vessel density in tumors. Moreover, both the anti- and syn-BrP-LPA significantly reduced tumors at 3 mg/kg.


Assuntos
Neoplasias da Mama/patologia , Movimento Celular/efeitos dos fármacos , Lisofosfolipídeos/uso terapêutico , Complexos Multienzimáticos/antagonistas & inibidores , Organofosfonatos/uso terapêutico , Fosfodiesterase I/antagonistas & inibidores , Pirofosfatases/antagonistas & inibidores , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Humanos , Diester Fosfórico Hidrolases
20.
J Biol Chem ; 284(21): 14558-71, 2009 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-19293149

RESUMO

The G protein-coupled lysophosphatidic acid 2 (LPA(2)) receptor elicits prosurvival responses to prevent and rescue cells from apoptosis. However, G protein-coupled signals are not sufficient for the full protective effect of LPA(2). LPA(2) differs from other LPA receptor subtypes in the C-terminal tail, where it contains a zinc finger-binding motif for the interactions with LIM domain-containing TRIP6 and proapoptotic Siva-1, and a PDZ-binding motif through which it complexes with the NHERF2 scaffold protein. In this report, we identify a unique CXXC motif of LPA(2) responsible for the binding to TRIP6 and Siva-1, and demonstrate that disruption of these macromolecular complexes or knockdown of TRIP6 or NHERF2 expression attenuates LPA(2)-mediated protection from chemotherapeutic agent-induced apoptosis. In contrast, knockdown of Siva-1 expression enhances this effect. Furthermore, a PDZ-mediated direct interaction between TRIP6 and NHERF2 facilitates their interaction with LPA(2). Together, these results suggest that in addition to G protein-activated signals, the cooperation embedded in the LPA(2)-TRIP6-NHERF2 ternary complex provides a novel ligand-dependent signal amplification mechanism that is required for LPA(2)-mediated full activation of antiapoptotic signaling.


Assuntos
Apoptose , Receptores de Ácidos Lisofosfatídicos/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Apoptose/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular Tumoral , Citoproteção/efeitos dos fármacos , Doxorrubicina/farmacologia , Feminino , Proteínas de Ligação ao GTP/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas com Domínio LIM , Lipoilação/efeitos dos fármacos , Lisofosfolipídeos/farmacologia , Camundongos , Dados de Sequência Molecular , Mutação/genética , Neoplasias Ovarianas/patologia , Fosfoproteínas/metabolismo , Complexo de Endopeptidases do Proteassoma , Ligação Proteica/efeitos dos fármacos , Receptores de Ácidos Lisofosfatídicos/química , Trocadores de Sódio-Hidrogênio/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...