Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202318035, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38586975

RESUMO

Environmentally friendly crosslinked polymer networks feature degradable covalent or non-covalent bonds, with many of them manifesting dynamic characteristics. These attributes enable convenient degradation, facile reprocessibility, and self-healing capabilities. However, the inherent instability of these crosslinking bonds often compromises the mechanical properties of polymer networks, limiting their practical applications. In this context, environmentally friendly dual-crosslinking polymer networks (denoted EF-DCPNs) have emerged as promising alternatives to address this challenge. These materials effectively balance the need for high mechanical properties with the ability to degrade, recycle, and/or self-heal. Despite their promising potential, investigations into EF-DCPNs remain in their nascent stages, and several gaps and limitations persist. This Review provides a comprehensive overview of the synthesis, properties, and applications of recent progress in EF-DCPNs. Firstly, synthetic routes to a rich variety of EF-DCPNs possessing two distinct types of dynamic bonds (i.e., imine, disulfide, ester, hydrogen bond, coordination bond, and other bonds) are introduced. Subsequently, complex structure- and dynamic nature-dependent mechanical, thermal, and electrical properties of EF-DCPNs are discussed, followed by their exemplary applications in electronics and biotechnology. Finally, future research directions in this rapidly evolving field are outlined.

2.
ACS Appl Mater Interfaces ; 15(46): 53776-53785, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37935010

RESUMO

Two-dimensional (2D) materials such as MXenes have shown great potential for energy storage applications due to their high surface area and high conductivity. However, their practical implementation is limited by their tendency to restack, similar to other 2D materials, leading to a decreased long-term performance. Here, we present a novel approach to addressing this issue by combining MXene (Ti3C2Tx) nanosheets with branched ionic nanoparticles from polyhedral oligomeric silsesquioxanes (POSS) using an amphiphilicity-driven assembly for the formation of composite monolayers of nanoparticle-decorated MXene nanosheets at the air-water interface. The amphiphilic hybrid MXene/POSS monolayers allow for the fabrication of organized multilayered films with ionic nanoparticles supporting the nanoscale gap between MXene nanosheets. For these composite multilayers, we observed a 400% enhancement in specific capacitance compared to pure drop-cast MXene films. Furthermore, dramatically enhanced electrochemical cycling stability for ultrathin-film electrodes (<400 nm in thickness) with a 91% capacitance retention over 10,000 cycles has been achieved. Our results suggest that this insertion of 0D ionic nanoparticles with complementary interactions in between 2D MXene nanosheets could be extended to other hybrid 0D-2D nanomaterials, providing a promising pathway for the development of hybrid electrode architectures with enhanced ionic transport for long-term energy cycling and storage, capacitive deionization, and ionic filtration.

3.
ACS Nano ; 17(19): 18883-18892, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37721448

RESUMO

The signal transmission of the nervous system is regulated by neurotransmitters. Depending on the type of neurotransmitter released by presynaptic neurons, neuron cells can either be excited or inhibited. Maintaining a balance between excitatory and inhibitory synaptic responses is crucial for the nervous system's versatility, elasticity, and ability to perform parallel computing. On the way to mimic the brain's versatility and plasticity traits, creating a preprogrammed balance between excitatory and inhibitory responses is required. Despite substantial efforts to investigate the balancing of the nervous system, a complex circuit configuration has been suggested to simulate the interaction between excitatory and inhibitory synapses. As a meaningful approach, an optoelectronic synapse for balancing the excitatory and inhibitory responses assisted by light mediation is proposed here by deploying humidity-sensitive chiral nematic phases of known polysaccharide cellulose nanocrystals. The environment-induced pitch tuning changes the polarization of the helicoidal organization, affording different hysteresis effects with the subsequent excitatory and inhibitory nonvolatile behavior in the bio-electrolyte-gated transistors. By applying voltage pulses combined with stimulation of chiral light, the artificial optoelectronic synapse tunes not only synaptic functions but also learning pathways and color recognition. These multifunctional bio-based synaptic field-effect transistors exhibit potential for enhanced parallel neuromorphic computing and robot vision technology.

4.
Small ; 19(32): e2303064, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37162465

RESUMO

Advanced multiplexing optical labels with multiple information channels provide a powerful strategy for large-capacity and high-security information encryption. However, current optical labels face challenges of difficulty to realize independent multi-channel encryption, cumbersome design, and environmental pollution. Herein, multiplexing chiroptical bio-labels integrating with multiple optical elements, including structural color, photoluminescence (PL), circular polarized light activity, humidity-responsible color, and micro/nano physical patterns, are constructed in complex design based on host-guest self-assembly of cellulose nanocrystals and bio-gold nanoclusters. The thin nanocellulose labels exhibit tunable circular polarized structural color crossover the entire visible wavelength and circularly polarized PL with the highest-recorded dissymmetry factor up to 1.05 due to the well-ordered chiral organization of templated gold nanoclusters. Most importantly, these elements can independently encode customized anti-counterfeiting information to achieve five independent channels of high-level anti-counterfeiting, which are rarely achieved in traditional materials and design counterparts. Considering the exceptional seamless integration of five independent encryption channels and the recyclable features of labels, the bio-labels have great potential for the next generation anti-counterfeiting materials technology.

5.
Angew Chem Int Ed Engl ; 62(30): e202305646, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37235528

RESUMO

Chiral metal-organic frameworks (MOFs) have gained rising attention as ordered nanoporous materials for enantiomer separations, chiral catalysis, and sensing. Among those, chiral MOFs are generally obtained through complex synthetic routes by using a limited choice of reactive chiral organic precursors as the primary linkers or auxiliary ligands. Here, we report a template-controlled synthesis of chiral MOFs from achiral precursors grown on chiral nematic cellulose-derived nanostructured bio-templates. We demonstrate that chiral MOFs, specifically, zeolitic imidazolate framework (ZIF), unc-[Zn(2-MeIm)2 , 2-MeIm=2-methylimidazole], can be grown from regular precursors within nanoporous organized chiral nematic nanocelluloses via directed assembly on twisted bundles of cellulose nanocrystals. The template-grown chiral ZIF possesses tetragonal crystal structure with chiral space group of P41 , which is different from traditional cubic crystal structure of I-43 m for freely grown conventional ZIF-8. The uniaxially compressed dimensions of the unit cell of templated ZIF and crystalline dimensions are signatures of this structure. We observe that the templated chiral ZIF can facilitate the enantiotropic sensing. It shows enantioselective recognition and chiral sensing abilities with a low limit of detection of 39 µM and the corresponding limit of chiral detection of 300 µM for representative chiral amino acid, D- and L- alanine.

6.
Small ; 19(18): e2207921, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36732850

RESUMO

It is suggested that chiral photonic bio-enabled integrated thin-film electronic elements can pave the base for next-generation optoelectronic processing, including quantum coding for encryption as well as integrated multi-level logic circuits. Despite recent advances, thin-film electronics for encryption applications with large-scale reconfigurable and multi-valued logic systems are not reported to date. Herein, highly secure optoelectronic encryption logic elements are demonstrated by facilitating the humidity-sensitive helicoidal organization of chiral nematic phases of cellulose nanocrystals (CNCs) as an active electrolyte layer combined with printed organic semiconducting channels. The ionic-strength controlled tunable photonic band gap facilitates distinguishable and quantized 13-bit electric signals triggered by repetitive changes of humidity, voltage, and the polarization state of the incident light. As a proof-of-concept, the integrated circuits responding to circularly polarized light and humidity are demonstrated as unique physically unclonable functional devices with high-level logic rarely achieved. The convergence between functional nanomaterials and the multi-valued logic thin-film electronic elements can provide optoelectronic counterfeiting, imaging, and information processing with multilevel logic nodes.

7.
Nat Mater ; 22(1): 18-35, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36446962

RESUMO

Next-generation structural materials are expected to be lightweight, high-strength and tough composites with embedded functionalities to sense, adapt, self-repair, morph and restore. This Review highlights recent developments and concepts in bioinspired nanocomposites, emphasizing tailoring of the architecture, interphases and confinement to achieve dynamic and synergetic responses. We highlight cornerstone examples from natural materials with unique mechanical property combinations based on relatively simple building blocks produced in aqueous environments under ambient conditions. A particular focus is on structural hierarchies across multiple length scales to achieve multifunctionality and robustness. We further discuss recent advances, trends and emerging opportunities for combining biological and synthetic components, state-of-the-art characterization and modelling approaches to assess the physical principles underlying nature-inspired design and mechanical responses at multiple length scales. These multidisciplinary approaches promote the synergetic enhancement of individual materials properties and an improved predictive and prescriptive design of the next era of structural materials at multilength scales for a wide range of applications.


Assuntos
Materiais Biomiméticos , Nanocompostos , Materiais Biomiméticos/química , Nanocompostos/química , Água/química
8.
Nat Commun ; 13(1): 5804, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192544

RESUMO

Naturally derived biopolymers have attracted great interest to construct photonic materials with multi-scale ordering, adaptive birefringence, chiral organization, actuation and robustness. Nevertheless, traditional processing commonly results in non-uniform organization across large-scale areas. Here, we report magnetically steerable uniform biophotonic organization of cellulose nanocrystals decorated with superparamagnetic nanoparticles with strong magnetic susceptibility, enabling transformation from helicoidal cholesteric (chiral nematic) to uniaxial nematic phase with near-perfect orientation order parameter of 0.98 across large areas. We demonstrate that magnetically triggered high shearing rate of circular flow exceeds those for conventional evaporation-based assembly by two orders of magnitude. This high rate shearing facilitates unconventional unidirectional orientation of nanocrystals along gradient magnetic field and untwisting helical organization. These translucent magnetic films are flexible, robust, and possess anisotropic birefringence and light scattering combined with relatively high optical transparency reaching 75%. Enhanced mechanical robustness and uniform organization facilitate fast, multimodal, and repeatable actuation in response to magnetic field, humidity variation, and light illumination.


Assuntos
Materiais Inteligentes , Biopolímeros , Celulose/química , Fenômenos Magnéticos , Magnetismo
9.
Langmuir ; 38(39): 12070-12081, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36150123

RESUMO

Thermo-responsive ionic polymers have the ability to form adaptive and switchable morphologies, which may offer enhanced control in energy storage and catalytic applications. Current thermo-responsive polymers are composed of covalently attached thermo-responsive moieties, restricting their mobility and global dynamic response. Here, we report the synthesis and assembly at the water-air interface of symmetric and asymmetric amphiphilic thermo-responsive branched polymers with weakly ionically bound arms of amine-terminated poly(N-isopropylacrylamide) (PNIPAM) macro-cations. As we observed, symmetric branched polymers formed multimolecular nanosized micellar assemblies, whereas corresponding asymmetric polymers formed large, interconnected worm-like aggregates. Dramatic changes in localized and large-scale chemical composition confirmed the reversible adsorption and desorption of the mobile PNIPAM macro-cations below and above the low critical solution temperature (LCST) and their non-uniform redistribution within polymer monolayer. Increasing the temperature above LCST led to the formation of large interconnected micellar aggregates because of the micelle-centered aggregation of the hydrophobized PNIPAM macro-cationic terminal chains in the aqueous subphase. Overall, this work provides insights into the dynamic nature of the chemical composition of branched ionic polymers with weakly ionically bound thermo-responsive terminal chains and its effect on both morphology and local/surface chemistry of monolayers at LCST transition.

10.
ACS Nano ; 16(9): 13684-13694, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-35882006

RESUMO

Photonic bio-organic multiphase structures are suggested here for integrated thin-film electronic nets with multilevel logic elements for multilevel computing via a reconfigurable photonic bandgap of chiral biomaterials. Herein, inspired by an artificial intelligence system with efficient information integration and computing capability, the photonically active dielectric layer of chiral nematic cellulose nanocrystals is combined with printed-in p- and n-type organic semiconductors as a bifunctional logical element. These adaptive logic elements are capable of triggering tailored quantized electrical output signals under light with different photon energy and at the different photonic bandgaps of the active dielectric layer. The bifunctional structures enable complex memory behavior upon repetitive changes of photonic bandgap (controlled by expansion/contraction of chiral nematic pitch) and photon energy (controlled by light absorption wavelength of complementary organic semiconductor layers), exhibiting effectively a reconfigurable ternary logic response. This proof-of-concept bio-assisted multivalued logic structure facilitates an optical computing system for low-power optical information processing integrated with human-machine interfaces.


Assuntos
Inteligência Artificial , Semicondutores , Materiais Biocompatíveis , Celulose/química , Humanos , Lógica
11.
Artigo em Inglês | MEDLINE | ID: mdl-35658086

RESUMO

Flexible and mechanically robust gel-like electrolytes offer enhanced energy storage capabilities, versatility, and safety in batteries and supercapacitors. However, the trade-off between ion conduction and mechanical robustness remains a challenge for these materials. Here, we suggest that the introduction of ionic hyperbranched polymers in structured sustained ionogels will lead to both enhanced ion conduction and mechanical performance because of the hyperbranched polymers' ionically conductive groups and the complementary interfacial interactions with ionic liquids. More specifically, we investigate the effect of hyperbranched polymers with carboxylate terminal groups and imidazolium counterions with various ionic group densities on the properties of ionogels composed of coassembled cellulose nanofibers (CNFs) and cellulose nanocrystals (CNCs) as sustainable open pore frame for ionic liquid immersion. The addition of hyperbranched polymers leads to the formation of highly interconnected openly porous, lightweight, and shape-persistent materials by harnessing hydrogen bonding between the polymers and the CNFs/CNCs "frame". Notably, these materials possess a 2-fold improvement in ionic conductivity combined with many-fold increase in Young's modulus, tensile strength, and toughness, making them comparable to common reinforced nanocomposite materials. Furthermore, the corresponding thin-film gel supercapacitors possess enhanced electrochemical cycling stability upon repeated bending with an 85% capacitance retention after 10 000 cycles, promising new insight in the development of simultaneously conductive and flexible gel electrolytes with sustained performance.

12.
Langmuir ; 38(20): 6363-6375, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35559606

RESUMO

We discuss the effect of the ionic strength and effective charge density on the final structural organization of cellulose nanocrystals (CNCs) after drying suspensions with different ionic strengths in terms of quantitative characteristics of the orientation order, rarely considered to date. We observed that increasing the ionic strength in the initial suspension results in continuous shrinking of the helical pitch length that shifts the photonic band gap to a far UV region from the visible range (from 400 to 250 nm) because of the increase in the helical twisting power from 4 to 6 µm-1 and doubling of the twisting angle between neighboring monolayers from 5.5 to 9°. As our estimation of the Coulombic interactions demonstrates, the reduction of the Debye charge screening length below a critical value of 3 nm results in the loss of the long-range helicoidal order and the transition to a disordered morphology with random packing of nanocrystals. Subsequently, very high orientation ordering with the 2D orientation factor, S, within the range 0.8-0.9, close to the theoretical limit of 1, gradually decreased to a very low value of S = 0.1-0.2, a characteristic of random organization at high ionic strength. We suggest that the loss of the chiral ordering is a result of the reduction of repulsive forces, promoting direct physical contact with the reduced contact area during Brownian motion, combined with increased repulsive Coulombic interactions of nanocrystals at nonparallel local packing. Notably, electrolyte addition enhances chiral interactions to the point where the helical twisting power is too large and the resulting nanocrystal bundles can no longer compactly pack without creating unfavorably large free volume. We propose that the Debye charge screening length in suspensions can be used as a universal parameter for CNCs under different conditions and can be used to assess expected ordering characteristics in the solid films.

14.
ACS Appl Mater Interfaces ; 14(3): 4699-4713, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35015495

RESUMO

The ultimate properties of carbon fibers and their composites are largely dictated by the surface topography of the fibers and the interface characteristics, which are primarily influenced by the surface distribution of chemical functionalities and their interactions with the matrix resin. Nevertheless, nanoscale insights on the carbon fiber surface in relationship with its chemical modification are still rarely addressed. Here, we demonstrate a critical insight on the nanoscale surface topography characterization of modified novel carbon fibers using high-resolution atomic force microscopy at multiple length scales. We compare the nanoscale surface characteristics relevant to their role in controlling interfacial interactions for carbon fibers manufactured at two different tensions and two distinct chemically functionalized coatings. We used surface dimple (also known as nanopores) profiling, microroughness analysis, power spectral density analysis, and adhesion and electrostatic potential mapping to reveal the fine details of surface characteristics at different length scales. This analysis demonstrates that the carbon fibers processed at lower tension possess a higher fractal dimension with a more corrugated surface and higher surface roughness, which leads to increased surface adhesion and energy dissipation across nano- and microscales. Furthermore, electrochemical surface modification with amine- and fluoro-functional groups significantly masks the microroughness inherent to these fibers. This results in increased fractal dimension and decreased energy dissipation and adhesion due to the high chemical reactivity in the areas of asperities and surface defects combined with a significant increase in the surface potential, as revealed by Kelvin probe mapping. These local surface properties of carbon fibers are crucial for designing next-generation fiber composites with predictable interfacial strength and the overall mechanical performance by considering the fiber surface topography for proper control of interphase formation.

15.
Small ; 18(2): e2104340, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34766725

RESUMO

There is currently an extensive demand for simple and effective synthetic methods to allow the design and fabrication of robust and flexible chiral materials that can generate strong and switchable circularly polarized luminescence (CPL). Herein, biosynthetic light-emitting adhesive materials based upon chiral nematic cellulose nanocrystal-polyelectrolyte complexes with universal high adhesion on both hydrophilic and hydrophobic substrates are reported. Strong and dynamic photoluminescence with highly asymmetric and switchable circular polarization is induced by minute rare earth europium doping without compromising adhesive strength and initial iridescent properties. The photoluminescence can be temporarily quenched with highly volatile acetone vapor and liquid followed by fast recovery after drying with full restoration of initial emission. The unique properties of light-emitting bio-adhesives with universal adhesion, amplified and dynamic photoluminescence, and large and switchable CPL can be utilized for security optical coding, bio-optical memory, hidden communication, and biochemical sensing as wearable stickers, prints, and tattoos to directly adhere to human clothes, gadgets, and skin by using adhesive stickers with bright tailored photoluminescence.


Assuntos
Luminescência , Nanopartículas , Celulose/química , Humanos , Nanopartículas/química
16.
ACS Nano ; 15(12): 20353-20363, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34874717

RESUMO

We fabricate the bio-organic field-effect transistor (BOFET) with the DNA-perylene diimide (PDI) complex, which shows unusual chiroptical and electrical functionalities. DNA is used as the chirality-inducing scaffold and the charge-injection layer. The shear-oriented film of the DNA-PDI complex shows how the large-area periodic molecular orientation and the charge transport are related, generating drastically different optoelectronic properties at each DNA/PDI concentration. The resultant BOFET reveals chiral structures with a high charge carrier mobility, photoresponsivity, and photosensitivity, reaching 3.97 cm2 V-1 s-1, 1.18 A W-1, and 7.76 × 103, respectively. Interestingly, the BOFET enables the definitive response under the handedness of circularly polarized light with a high dissymmetry factor of approximately +0.14. This work highlights the natural chirality and anisotropy of DNA material and the electron conductivity of organic semiconducting molecules to be mutually used in significant chiro-optoelectronic functions as an added ability to the traditional OFET.


Assuntos
Elétrons , Semicondutores , Anisotropia , DNA
17.
ACS Nano ; 15(12): 19418-19429, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34874720

RESUMO

We demonstrate bioenabled crack-free chiral nematic films prepared via a unidirectional flow of cellulose nanocrystals (CNCs) in the capillary confinement. To facilitate the uniform long-range nanocrystal organization during drying, we utilized tunicate-inspired hydrogen-bonding-rich 3,4,5-trihydroxyphenethylamine hydrochloride (TOPA) for physical cross-linking of nanocrystals with enhanced hydrogen bonding and polyethylene glycol (PEG) as a relaxer of internal stresses in the vicinity of the capillary surface. The CNC/TOPA/PEG film is organized as a left-handed chiral structure parallel to flat walls, and the inner volume of the films displayed transitional herringbone organization across the interfacial region. The resulting thin films also exhibit high mechanical performance compared to brittle films with multiple cracks commonly observed for capillary-formed pure CNC films. The chiral nematic ordering of modified TOPA-PEG-CNC material propagates through the entire thickness of robust monolithic films and across centimeter-sized surface areas, facilitating consistent, vivid iridescence, and enhanced circular polarization. The best performance that prevents the cracks was achieved for a CNC/TOPA/PEG film with a minimal, 3% amount of TOPA. Overall, we suggest that intercalation of small highly adhesive molecules to cellulose nanocrystal-polymer matrices can facilitate uniform flow of liquid crystal phase and drying inside the capillary, resulting in improvement of the ultimate tensile strength and toughness (77% and 100% increase, respectively) with controlled uniform optical reflection and enhanced circular polarization unachievable during regular drying conditions.

18.
Adv Mater ; 33(42): e2103674, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34476859

RESUMO

A soft photonic bio-adhesive material is designed with real-time colorimetrical monitoring of switchable adhesion by integrating a responsive bio-photonic matrix with mobile hydrogen-binding networking. Synergetic materials sequencing creates a unique iridescent appearance directly coupled with both adhesive ability and shearing strength, in a highly reversible manner. The responsive photonic materials, having a physically hydrogen-bonded chiral nematic organization, vary their adhesion strength due to a transition in cohesive and interfacial failure mechanism in humid surroundings. The bright color appearance shifts from blue to red to transparent and back due to a change in pitch length of the chiral helicoidal organization that also triggers coupled changes in both mechanical strength and interfacial adhesion. Such reversible strength-adhesion-iridescence triple-coupling phenomenon is further explored for design of super-strong switchable bio-adhesives for synthetic/biological surfaces with quick remotely triggered sticky-to-nonsticky transitions, removable conformal soft stickers, and wound dressings with visual monitoring of the healing process, to colorimetric stickers for contaminated respiratory masks.

19.
Adv Mater ; 33(38): e2103329, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34331313

RESUMO

Real-time active control of the handedness of circularly polarized light emission requires sophisticated manufacturing and structural reconfigurations of inorganic optical components that can rarely be achieved in traditional passive optical structures. Here, robust and flexible emissive optically-doped biophotonic materials that facilitate the dynamic optical activity are reported. These optically active bio-enabled materials with a chiral nematic-like organization of cellulose nanocrystals with intercalated organic dye generated strong circularly polarized photoluminescence with a high asymmetric factor. Reversible phase-shifting of the photochromic molecules intercalated into chiral nematic organization enables alternating circularly polarized light emission with on-demand handedness. Real-time alternating handedness can be triggered by either remote light illumination or changes in the acidic environment. This unique dynamic chiro-optical behavior presents an efficient way to design emissive bio-derived materials for dynamic programmable active photonic materials for optical communication, optical coding, visual protection, and visual adaptation.

20.
Langmuir ; 37(9): 2913-2927, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33621461

RESUMO

We synthesized novel amphiphilic hyperbranched polymers (HBPs) with variable contents of weakly ionically tethered thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) macrocations in contrast to traditional covalent linking. Their assembling behavior was studied below and above the lower critical solution temperature (LCST). The HBPs underwent a morphological transition under changing temperature and ionic strength due to the LCST transition of PNIPAM and the reduction in the ionization degree of terminal ionic groups, respectively. We suggest that, in contrast to traditional branched polymers, ionically linked PNIPAM macrocations can reversibly disassociate from the sulfonate groups and form mobile coronas, endowing the dynamic micellar morphologies. In addition, assembly at the air-water interface confined PNIPAM macrocations and resulted in the formation of heterogeneous Langmuir-Blodgett (LB) monolayers with diverse surface morphologies for different peripheral compositions with circular domains formed in the condensed state. The HBPs with 25% PNIPAM showed larger and more stable circular domains that were partially preserved at high compression than those of HBPs with 50% PNIPAM. Moreover, the LB monolayers showed variable surface mechanical and surface charge distribution, which can be attributed to net dipole redistribution caused by the behavior of mobile PNIPAM macrocations and core sulfonate groups.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...