Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 11(12)2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34944458

RESUMO

Diacylglycerol kinase ß (DGKß) is an enzyme that converts diacylglycerol to phosphatidic acid and is mainly expressed in the cerebral cortex, hippocampus and striatum. We previously reported that DGKß induces neurite outgrowth and spinogenesis, contributing to higher brain functions, including emotion and memory. To elucidate the mechanisms involved in neuronal development by DGKß, we investigated the importance of DGKß activity in the induction of neurite outgrowth using human neuroblastoma SH-SY5Y cells. Interestingly, both wild-type DGKß and the kinase-negative (KN) mutant partially induced neurite outgrowth, and these functions shared a common pathway via the activation of mammalian target of rapamycin complex 1 (mTORC1). In addition, we found that DGKß interacted with the small GTPase RalA and that siRNA against RalA and phospholipase D (PLD) inhibitor treatments abolished DGKßKN-induced neurite outgrowth. These results indicate that binding of RalA and activation of PLD and mTORC1 are involved in DGKßKN-induced neurite outgrowth. Taken together with our previous reports, mTORC1 is a key molecule in both kinase-dependent and kinase-independent pathways of DGKß-mediated neurite outgrowth, which is important for higher brain functions.


Assuntos
Crescimento Neuronal , Fosfolipase D , Corpo Estriado , Hipocampo
2.
Front Aging Neurosci ; 13: 573966, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33584249

RESUMO

Senescence-accelerated mouse prone 8 (SAMP8) is an animal model of age-related central nervous system (CNS) disorders. Although SAMP8 shows deficits in learning, memory, and emotion, its motor coordination has not been clarified. We have recently reported that DGKγ-regulated PKCγ activity is important for cerebellar motor coordination. However, involvement of the functional correlation between the kinases in age-related motor dyscoordination still remains unknown. Therefore, we have investigated the motor coordination in SAMP8 and involvement of the functional correlation between DGKγ and PKCγ in the age-related motor dyscoordination. Although 6 weeks old SAMP8 showed equivalent motor coordination with control mice (SAMR1) in the rotarod test, 24 weeks old SAMP8 exhibited significantly less latency in the rotarod test and more frequent slips in the beam test compared to the age-matched SAMR1. Furthermore, 24 weeks old SAMP8 showed the higher locomotor activity in open field test and Y-maze test. Western blotting revealed that DGKγ expression decreased in the cerebellum of 24 weeks old SAMP8, while PKCγ was upregulated. These results suggest that SAMP8 is a useful model of age-related motor dysfunction and that the DGKγ-regulated PKCγ activity is involved in the age-related motor dyscoordination.

3.
Int J Mol Sci ; 21(21)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33114041

RESUMO

Diacylglycerol kinase γ (DGKγ) is a lipid kinase to convert diacylglycerol (DG) to phosphatidic acid (PA) and indirectly regulates protein kinase C γ (PKCγ) activity. We previously reported that the basal PKCγ upregulation impairs cerebellar long-term depression (LTD) in the conventional DGKγ knockout (KO) mice. However, the precise mechanism in impaired cerebellar LTD by upregulated PKCγ has not been clearly understood. Therefore, we first produced Purkinje cell-specific DGKγ KO (tm1d) mice to investigate the specific function of DGKγ in Purkinje cells and confirmed that tm1d mice showed cerebellar motor dysfunction in the rotarod and beam tests, and the basal PKCγ upregulation but not PKCα in the cerebellum of tm1d mice. Then, the LTD-induced chemical stimulation, K-glu (50 mM KCl + 100 µM, did not induce phosphorylation of PKCα and dissociation of GluR2 and glutamate receptor interacting protein (GRIP) in the acute cerebellar slices of tm1d mice. Furthermore, treatment with the PKCγ inhibitor, scutellarin, rescued cerebellar LTD, with the phosphorylation of PKCα and the dissociation of GluR2 and GRIP. In addition, nonselective transient receptor potential cation channel type 3 (TRPC3) was negatively regulated by upregulated PKCγ. These results demonstrated that DGKγ contributes to cerebellar LTD by regulation of the basal PKCγ activity.


Assuntos
Cerebelo/fisiopatologia , Diacilglicerol Quinase/genética , Transtornos Motores/genética , Proteína Quinase C/metabolismo , Regulação para Cima , Animais , Apigenina/farmacologia , Diacilglicerol Quinase/metabolismo , Técnicas de Inativação de Genes , Glucuronatos/farmacologia , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Camundongos , Transtornos Motores/metabolismo , Transtornos Motores/fisiopatologia , Fosforilação , Células de Purkinje , Receptores de AMPA/metabolismo , Teste de Desempenho do Rota-Rod
4.
eNeuro ; 7(2)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32033984

RESUMO

Diacylglycerol kinase γ (DGKγ) regulates protein kinase C (PKC) activity by converting DG to phosphatidic acid (PA). DGKγ directly interacts with PKCγ and is phosphorylated by PKCγ, resulting in the upregulation of lipid kinase activity. PKC dysfunction impairs motor coordination, indicating that the regulation of PKC activity is important for motor coordination. DGKγ and PKC are abundantly expressed in cerebellar Purkinje cells. However, the physiological role of DGKγ has not been elucidated. Therefore, we developed DGKγ knock-out (KO) mice and tested their cerebellar motor coordination. In DGKγ KO mice, cerebellar motor coordination and long-term depression (LTD) were impaired, and the dendrites of Purkinje cells from DGKγ KO mice were significantly retracted. Interestingly, treatment with the cPKC inhibitor Gö6976 (Gö) rescued the dendritic retraction of primary cultured Purkinje cells from DGKγ KO mice. In contrast, treatment with the PKC activator 12-o-tetradecanoylphorbol 13-acetate (TPA) reduced morphologic alterations in the dendrites of Purkinje cells from wild-type (WT) mice. In addition, we confirmed the upregulation of PKCγ activity in the cerebellum of DGKγ KO mice and rescued impaired LTD in DGKγ KO mice with a PKCγ-specific inhibitor. Furthermore, impairment of motor coordination observed in DGKγ KO mice was rescued in tm1c mice with DGKγ reexpression induced by the FLP-flippase recognition target (FRT) recombination system. These results indicate that DGKγ is involved in cerebellar LTD and the dendritic development of Purkinje cells through the regulation of PKCγ activity, and thus contributes to cerebellar motor coordination.


Assuntos
Cerebelo , Células de Purkinje , Animais , Cerebelo/metabolismo , Diacilglicerol Quinase , Camundongos , Camundongos Knockout , Plasticidade Neuronal , Proteína Quinase C/metabolismo , Células de Purkinje/metabolismo
5.
Neurochem Int ; 134: 104645, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31891737

RESUMO

Diacylglycerol kinase ß (DGKß) is an enzyme converting DG to phosphatidic acid (PA) and is specifically expressed in neurons, especially those in the cerebral cortex, hippocampus and striatum. We previously reported that DGKß induces neurite outgrowth and spinogenesis, contributing to higher brain function including emotion and memory, and plasma membrane localization of DGKß via the C1 domain and a cluster of basic amino acids at the C-terminus is necessary for its function. To clarify the mechanisms involved in neuronal development by DGKß, we investigated whether DGKß activity induces neurite outgrowth using human neuroblastoma SH-SY5Y cells. DGKß induced neurite outgrowth by activation of mammalian target of rapamycin complex 1 (mTORC1) through a kinase-dependent pathway. In addition, in primary cultured cortical and hippocampal neurons, inhibition of mTORC1 abolished DGKß induced-neurite outgrowth, branching and spinogenesis. These results indicated that DGKß induces neurite outgrowth and spinogenesis by activating mTORC1 in a kinase-dependent pathway.


Assuntos
Diacilglicerol Quinase/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Crescimento Neuronal/fisiologia , Neurônios/metabolismo , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Crescimento Neuronal/efeitos dos fármacos
6.
J Biochem ; 165(6): 517-522, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30715374

RESUMO

Diacylglycerol kinase (DGK) is a lipid kinase that converts diacylglycerol (DG) into phosphatidic acid (PA). DG and PA function as lipid messengers contributing to various signalling pathways. Thus, DGK plays a pivotal role in the signalling pathways by maintaining DG and PA levels. For example, DGKδ is involved in diabetes and DGKß is important for higher brain function including memory and emotion. Recently, we also revealed that the activation of DGKα ameliorated diabetic nephropathy (DN) in mice, suggesting that DGK can be therapeutic target. However, there is no commercially available DGK subtype-specific inhibitors or activators. Therefore, in a series of experiment to find DGK subtype-specific inhibitors or activators, we tried to screen novel DGKα activators from 9,600 randomly selected compounds by using high-throughput screening we had recently developed. Finally, we obtained two lead compounds for DGKα activators, KU-8 and KU-10. Focusing KU-8, we assessed the effect of KU-8 on all mammalian DGKs activities. Thus, KU-8 activates not only DGKα but also DGKθ by approximately 20%, and strongly inhibited DGKκ. In conclusion, KU-8 would be a good lead compound for DGKα and DGKθ activators, and useful as a DGKκ inhibitor.


Assuntos
Ciclopropanos/farmacologia , Diacilglicerol Quinase/antagonistas & inibidores , Diacilglicerol Quinase/metabolismo , Dioxinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Xilenos/farmacologia , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Ciclopropanos/química , Dioxinas/química , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala , Camundongos , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Xilenos/química
7.
Nihon Yakurigaku Zasshi ; 152(2): 90-93, 2018.
Artigo em Japonês | MEDLINE | ID: mdl-30101866

RESUMO

Brain can be roughly divided into two parts, cerebrum and cerebellum. Cerebrum controls higher brain functions including memory, emotion and cognition, while cerebellum is important for motor coordination. The only output neuron in cerebellum, Purkinje cell, regulates long term depression (LTD). LTD and morphology of Purkinje cells are important for motor function. So far, disorder of protein kinase C (PKC) α and γ, which are expressed in Purkinje cells, impaired LTD, morphology of Purkinje cells and motor coordination. Diacylglycerol kinase (DGK) γ phosphorylates diacylglycerol (DG) and is abundantly expressed in Purkinje cells. In other words, DGKγ can attenuate PKC activity by reducing amount of DG and may contribute to motor coordination. However, its physiological role has not been elucidated. Therefore, we developed DGKγ knockout (KO) mice and investigated their LTD, morphology of Purkinje cells, and cerebellar motor coordination. We found that cerebellar motor coordination and LTD were impaired in the DGKγ KO mice and the morphology of Purkinje cells from DGKγ KO mice was significantly retracted. Interestingly, abnormal activation of PKCγ was involved in impairment of the morphology of Purkinje cells from DGKγ KO mice. These results indicated that DGKγ was involved in cerebellar LTD and morphology of Purkinje cells, and DG signaling is important for cerebellar motor coordination.


Assuntos
Cerebelo , Animais , Diglicerídeos , Camundongos , Camundongos Knockout , Plasticidade Neuronal , Células de Purkinje
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA