Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 15(2): 1309-14, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25594686

RESUMO

Electron holographic vector field electron tomography visualized three-dimensional (3D) magnetic vortices in stacked ferromagnetic discs in a nanoscale pillar. A special holder with two sample rotation axes, both without missing wedges, was used to reduce artifacts in the reconstructed 3D magnetic vectors. A 1 MV holography electron microscope was used to precisely measure the magnetic phase shifts. Comparison of the observed 3D magnetic field vector distributions in the magnetic vortex cores with the results of micromagnetic simulations based on the Landau-Lifshitz-Gilbert equation showed that the proposed technique is well suited for direct 3D visualization of the spin configurations in magnetic materials and spintronics devices.

2.
Microscopy (Oxf) ; 63(6): 469-73, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25145647

RESUMO

A dual-axis 360° rotation specimen holder was developed for use in reconstructing the three-dimensional (3D) distribution of a magnetic field using a combination of electron holography and tomography. Pillar-shaped specimens are used to obtain accurate reconstruction without a missing angle. The holder's rotation rod can be turned >360°; the pillar is set ±45° to the azimuth for both x- and y-axis rotation. Two rotation series of holograms in individual axes are recorded for vector field tomography. The two vector components of the magnetic field are reconstructed directly from the two series of holograms, and the remaining component is calculated using Maxwell's equation, div B = 0. As a result, all 3D magnetic fields are reconstructed.

3.
J Electron Microsc (Tokyo) ; 51(3): 167-71, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12113624

RESUMO

We developed a specimen-drift-free energy-dispersive X-ray (EDX) mapping system in a scanning transmission electron microscope (STEM) to improve the sensitivity and spatial resolution of EDX elemental mapping images. The amount of specimen drift was analysed from two STEM images before and after specimen drift by using the phase-correlation method, and was compensated for with an image-shift deflector of the STEM by the displacement of the scanning electron beam. We applied this system to observe the two-dimensional distribution of low dose arsenic in silicon semiconductor devices. The sensitivity of the elemental mapping was improved to several tenths atomic % for arsenic atoms while maintaining a spatial resolution of 2 nm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA