Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(8): 3415-3424, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36786031

RESUMO

Although dissolved inorganic phosphate (DIP) is an important nutrient in the hydrosphere, it is difficult to quantitatively clarify the dynamics of DIP in the hydrosphere using the δ18O value of DIP as a tracer. In this study, we quantified the triple oxygen isotopic compositions (Δ'17O) of DIP relative to VSMOW with the reference line with a slope of 0.528 as an additional tracer to clarify the sources and dynamics of DIP in the hydrosphere. We found significant variation in the Δ'17O values of riverine DIP in urban areas, ranging from -107 × 10-6 to +3 × 10-6, while those of DIP in the effluents from wastewater treatment plants (WWTP) and DIP extracted from the chemical fertilizers showed -56 ± 5 × 10-6 (1SD) and -98 ± 5 × 10-6, respectively. We conclude that both the DIP supplied directly from the artificial loads (the WWTP effluent and chemical fertilizers) showing 17O-depleted Δ'17O values and the DIP turned over via the aquatic biosphere showing 17O-enriched Δ'17O values similar to ambient H2O were the major sources of riverine DIP. High-precision determination of the Δ'17O value of DIP can contribute to quantitative clarification of the dynamics of DIP in the hydrosphere.


Assuntos
Fertilizantes , Fosfatos , Isótopos de Oxigênio/química , Fosfatos/química
2.
Rapid Commun Mass Spectrom ; 35(15): e9124, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33987886

RESUMO

RATIONALE: The triple oxygen isotopic composition (Δ17 O) of tropospheric ozone (O3 ) is a useful tracer for identifying the source and is essential for clarifying the atmospheric chemistry of oxidants. However, the single nitrite-coated filter method is inaccurate owing to the nitrate blank produced through the reaction of nitrite and oxygen compounds other than O3 . METHODS: A multistep nitrite-coated filter-pack system is newly adopted to transfer the O-atoms in terminal positions of O3 to nitrite on each filter to determine the Δ17 O of O3 in terminal positions (denoted as Δ17 O(O3 )term ). The NO3 - produced by this reaction is chemically converted into N2 O, and continuous-flow isotope ratio mass spectrometry (CF-IRMS) is used to determine the oxygen isotopic compositions. RESULTS: The reciprocal of the NO3 - quantities on the nitrite-coated filters in each sample showed a strong linear relationship with Δ17 O of NO3 - . Using the linear relation, we corrected the changes in Δ17 O of NO3 - on the filters. We verified the accuracy of the new method through the measurement of artificial O3 with known Δ17 O(O3 )term value that had been determined from the changes in Δ17 O of O2 . The Δ17 O(O3 )term of tropospheric O3 was in agreement with previous studies. CONCLUSIONS: We accurately determined the δ18 O and Δ17 O values of tropospheric O3 by blank correction using our new method. Measurements of Δ17 O(O3 )term of the ambient troposphere showed 1.1 ± 0.7‰ diurnal variations between daytime (higher) and nighttime (lower) due likely to the formation of the temperature inversion layer at night.

3.
Sci Adv ; 4(6): eaao4631, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29928689

RESUMO

Microbial life inhabiting subseafloor sediments plays an important role in Earth's carbon cycle. However, the impact of geodynamic processes on the distributions and carbon-cycling activities of subseafloor life remains poorly constrained. We explore a submarine mud volcano of the Nankai accretionary complex by drilling down to 200 m below the summit. Stable isotopic compositions of water and carbon compounds, including clumped methane isotopologues, suggest that ~90% of methane is microbially produced at 16° to 30°C and 300 to 900 m below seafloor, corresponding to the basin bottom, where fluids in the accretionary prism are supplied via megasplay faults. Radiotracer experiments showed that relatively small microbial populations in deep mud volcano sediments (102 to 103 cells cm-3) include highly active hydrogenotrophic methanogens and acetogens. Our findings indicate that subduction-associated fluid migration has stimulated microbial activity in the mud reservoir and that mud volcanoes may contribute more substantially to the methane budget than previously estimated.

4.
Artigo em Inglês | MEDLINE | ID: mdl-29300684

RESUMO

The flux and distribution of methane (CH4) was investigated in the seawater column at 14 stations in the Gunsan Basin, the southeastern part of Yellow Sea from 2013 to 2015. Here CH4 is concentrated 2.4-4.7 (3.4 ± 0.7) nM in the surface and 2.5-7.4 (5.2 ± 1.7) nM in the bottom layer. The CH4 saturation ratios ranged from 65.5% to 295.5% (162.6 ± 68.7), comprising the mean sea-to-air CH4 flux of 3.8 to 25.3 (15.6 ± 5.5) µM m-2d-1. Methane concentration was largely different in the upper and the lower seawater layers that is separated by the thermocline of which depth is variable (20-60 m) depending on the time of sampling. The concentration of seawater dissolved CH4 is high between the bottom surface of the thermocline layer and the sea floor. Generally it tends to decrease from the south-westernmost part of the basin toward the west coast of Korea. This distribution pattern of CH4 seems to result from the CH4 supply by decomposition of organic matters produced in the upper seawater layer that is superimposed by the larger supply from the underlying sediment layer especially beneath the thermocline. The latter is manifested by ubiquitous CH4 seeps from the seafloor sediments.


Assuntos
Metano/análise , Metano/farmacocinética , Água do Mar/química , Poluentes Químicos da Água/farmacocinética , Poluição Química da Água/análise , República da Coreia , Poluentes Químicos da Água/análise , Áreas Alagadas
5.
ISME J ; 12(1): 31-47, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28885627

RESUMO

Recent single-gene-based surveys of deep continental aquifers demonstrated the widespread occurrence of archaea related to Candidatus Methanoperedens nitroreducens (ANME-2d) known to mediate anaerobic oxidation of methane (AOM). However, it is unclear whether ANME-2d mediates AOM in the deep continental biosphere. In this study, we found the dominance of ANME-2d in groundwater enriched in sulfate and methane from a 300-m deep underground borehole in granitic rock. A near-complete genome of one representative species of the ANME-2d obtained from the underground borehole has most of functional genes required for AOM and assimilatory sulfate reduction. The genome of the subsurface ANME-2d is different from those of other members of ANME-2d by lacking functional genes encoding nitrate and nitrite reductases and multiheme cytochromes. In addition, the subsurface ANME-2d genome contains a membrane-bound NiFe hydrogenase gene putatively involved in respiratory H2 oxidation, which is different from those of other methanotrophic archaea. Short-term incubation of microbial cells collected from the granitic groundwater with 13C-labeled methane also demonstrates that AOM is linked to microbial sulfate reduction. Given the prominence of granitic continental crust and sulfate and methane in terrestrial subsurface fluids, we conclude that AOM may be widespread in the deep continental biosphere.


Assuntos
Água Subterrânea/microbiologia , Metano/metabolismo , Methanosarcinales/genética , Methanosarcinales/metabolismo , Dióxido de Silício/análise , Anaerobiose , Meio Ambiente , Genômica , Água Subterrânea/química , Methanosarcinales/classificação , Methanosarcinales/isolamento & purificação , Nitratos/metabolismo , Oxirredução , Filogenia , Dióxido de Silício/metabolismo , Sulfatos/metabolismo
6.
Sci Rep ; 6: 34126, 2016 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-27671524

RESUMO

Shallow submarine volcanoes have been newly discovered near the Tokara Islands, which are situated at the volcanic front of the northern Ryukyu Arc in southern Japan. Here, we report for the first time the volatile geochemistry of shallow hydrothermal plumes, which were sampled using a CTD-RMS system after analyzing water column images collected by multi-beam echo sounder surveys. These surveys were performed during the research cruise KS-14-10 of the R/V Shinsei Maru in a region stretching from the Wakamiko Crater to the Tokara Islands. The 3He flux and methane flux in the investigated area are estimated to be (0.99-2.6) × 104 atoms/cm2/sec and 6-60 t/yr, respectively. The methane in the region of the Tokara Islands is a mix between abiotic methane similar to that found in the East Pacific Rise and thermogenic one. Methane at the Wakamiko Crater is of abiotic origin but affected by isotopic fractionation through rapid microbial oxidation. The helium isotopes suggest the presence of subduction-type mantle helium at the Wakamiko Crater, while a larger crustal component is found close to the Tokara Islands. This suggests that the Tokara Islands submarine volcanoes are a key feature of the transition zone between the volcanic front and the spreading back-arc basin.

7.
Environ Microbiol Rep ; 8(2): 285-94, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26743638

RESUMO

Deep granitic aquifer is one of the largest, but least understood, microbial habitats. To avoid contamination from the surface biosphere, underground drilling was conducted for 300 m deep granitic rocks at the Mizunami underground research laboratory (URL), Japan. Slightly alkaline groundwater was characterized by low concentrations of dissolved organic matter and sulfate and the presence of > 100 nM H2 . The initial biomass was the highest (∼10(5) cells ml(-1) ) with the dominance of Hydrogenophaga spp., whereas the phylum Nitrospirae became predominant after 3 years with decreasing biomass (∼10(4) cells ml(-1) ). One week incubation of groundwater microbes after 3 years with (13) C-labelled bicarbonate and 1% H2 and subsequent single-cell imaging with nanometer-scale secondary ion mass spectrometry demonstrated that microbial cells were metabolically active. Pyrosequencing of microbial communities in groundwater retrieved at 3-4 years after drilling at the Mizunami URL and at 14 and 25 years after the drilling at the Grimsel Test Site, Switzerland, revealed the occurrence of common Nitrospirae lineages at the geographically distinct sites. As the close relatives of the Nitrospirae lineages were exclusively detected from deep groundwaters and terrestrial hot springs, it suggests that these bacteria are indigenous and potentially adapted to the deep terrestrial subsurface.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Biota , Água Subterrânea/microbiologia , Bactérias/metabolismo , Água Subterrânea/química , Hidrogênio/análise , Concentração de Íons de Hidrogênio , Japão , Compostos Orgânicos/análise , Sulfatos/análise , Suíça
8.
PLoS One ; 9(12): e113063, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25517230

RESUMO

In contrast to the deep subseafloor biosphere, a volumetrically vast and stable habitat for microbial life in the terrestrial crust remains poorly explored. For the long-term sustainability of a crustal biome, high-energy fluxes derived from hydrothermal circulation and water radiolysis in uranium-enriched rocks are seemingly essential. However, the crustal habitability depending on a low supply of energy is unknown. We present multi-isotopic evidence of microbially mediated sulfate reduction in a granitic aquifer, a representative of the terrestrial crust habitat. Deep meteoric groundwater was collected from underground boreholes drilled into Cretaceous Toki granite (central Japan). A large sulfur isotopic fractionation of 20-60‰ diagnostic to microbial sulfate reduction is associated with the investigated groundwater containing sulfate below 0.2 mM. In contrast, a small carbon isotopic fractionation (<30‰) is not indicative of methanogenesis. Except for 2011, the concentrations of H2 ranged mostly from 1 to 5 nM, which is also consistent with an aquifer where a terminal electron accepting process is dominantly controlled by ongoing sulfate reduction. High isotopic ratios of mantle-derived 3He relative to radiogenic 4He in groundwater and the flux of H2 along adjacent faults suggest that, in addition to low concentrations of organic matter (<70 µM), H2 from deeper sources might partly fuel metabolic activities. Our results demonstrate that the deep biosphere in the terrestrial crust is metabolically active and playing a crucial role in the formation of reducing groundwater even under low-energy fluxes.


Assuntos
Ecossistema , Microbiologia , Oceanos e Mares , Metabolismo Energético , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Água Subterrânea/química , Água Subterrânea/microbiologia , Concentração de Íons de Hidrogênio , Japão , Metano/química , Metano/metabolismo , Dióxido de Silício/química , Dióxido de Silício/metabolismo , Sulfatos/química , Sulfatos/metabolismo , Temperatura
9.
Bioresour Technol ; 164: 232-40, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24859215

RESUMO

Immobilized solid-phase humin on a graphite electrode set at -500 mV (vs. standard hydrogen electrode) significantly enhanced the microbial reductive dechlorination of pentachlorophenol as a stable solid-phase redox mediator in bioelectrochemical systems (BESs). Compared with the suspended system, the immobilized system dechlorinated PCP at a much higher efficiency, achieving 116 µmol Cl(-)g(-1) humin d(-1). Fluorescence microscopy showed a conspicuous growth of bacteria on the negatively poised immobilized humin. Electron balance analyses suggested that the electrons required for microbial dechlorination were supplied primarily from the humin-immobilized electrode. Microbial community analyses based on 16S rRNA genes showed that Dehalobacter and Desulfovibrio grew on the immobilized humin as potential dechlorinators. These findings extend the potential of BESs using immobilized solid-phase humin as the redox mediator for in situ bioremediation, given the wide distribution of humin and its efficiency and stability as a mediator.


Assuntos
Bactérias/metabolismo , Técnicas Eletroquímicas/métodos , Halogenação/efeitos dos fármacos , Substâncias Húmicas/análise , Pentaclorofenol/metabolismo , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Biodegradação Ambiental , Fontes de Energia Bioelétrica/microbiologia , Eletroforese em Gel de Gradiente Desnaturante , Eletricidade , Elétrons , Genes Bacterianos , Oxirredução , Filogenia , RNA Ribossômico 16S/genética
10.
FEMS Microbiol Ecol ; 86(3): 532-43, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23845087

RESUMO

Anaerobic microbial activity has a major influence on the subsurface environment. We investigated the denitrification and methanogenesis in anoxic groundwater at a depth of 140 m in two boreholes drilled in a sedimentary geological setting, where the redox potential fluctuated. The average maximum potential denitrification rates, measured under anaerobic conditions in the two boreholes using an (15) N tracer, were 0.060 and 0.085 nmol (30) N2  mL(-1)  h(-1) . The deduced NirS amino acid sequences obtained from in situ samples were similar to those of isolates belonging to the α-, ß-, and γ-Proteobacteria, and the Firmicutes (72-100% similarity). Based on the nirS gene, the same operational taxonomic unit dominated incubated samples from each borehole. Methanogenesis candidates were detected by 16S rRNA gene analysis, but no sequence was detected using primers for the functional methanogenesis gene mcrA. Although the stable isotope signatures suggested that some of the dissolved methane was of biogenic origin, no potential for methane production was evident during the incubations. The groundwater at 140 m depth did not contain oxygen, had an Eh ranging from -144 to 6.8 mV, and was found to be a potential field for denitrification.


Assuntos
Archaea/isolamento & purificação , Sedimentos Geológicos/microbiologia , Água Subterrânea/microbiologia , Proteobactérias/isolamento & purificação , Archaea/classificação , Archaea/genética , Archaea/metabolismo , Desnitrificação , Genes de RNAr , Japão , Metano/metabolismo , Dados de Sequência Molecular , Filogenia , Proteobactérias/classificação , Proteobactérias/genética , Proteobactérias/metabolismo , RNA Ribossômico 16S/genética
11.
Microb Ecol ; 65(3): 626-37, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23340500

RESUMO

Freshwater aquifers in granitic rocks are widespread microbial habitats in the terrestrial subsurface. Microbial populations in deep granitic groundwater from two recently drilled (1 and 2 years) and two old boreholes (14 and 25 years) were compared. The 16S rRNA gene sequences related to "Candidatus Magnetobacterium bavaricum", Thermodesulfovibrio spp. of Nitrospirae (90.5-93.1 % similarity) and a novel candidate division with <90 % similarity to known cultivated species were dominant in all boreholes. Most of the environmental clones closely related to the novel lineages in Nitrospirae, which have been detected exclusively in deep groundwater samples. In contrast, betaproteobacterial sequences related to the family Rhodocyclaceae were obtained only from the recently drilled boreholes, which had higher total cell numbers. Catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) analysis supported the result from clone library analysis; betaproteobacterial cells were dominantly detected in recently drilled boreholes. These results suggest that while indigenous microbial populations represented by the novel phylotypes persisted in the boreholes for 25 years, betaproteobacterial species disappeared after 2 years owing to the change of substrate availability.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Água Subterrânea/microbiologia , Bactérias/genética , Biodiversidade , DNA Bacteriano/genética , Ecossistema , Água Subterrânea/análise , Dados de Sequência Molecular , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Suíça
12.
Ambio ; 42(1): 13-28, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23076973

RESUMO

Megacities are not only important drivers for socio-economic development but also sources of environmental challenges. Many megacities and large urban agglomerations are located in the coastal zone where land, atmosphere, and ocean meet, posing multiple environmental challenges which we consider here. The atmospheric flow around megacities is complicated by urban heat island effects and topographic flows and sea breezes and influences air pollution and human health. The outflow of polluted air over the ocean perturbs biogeochemical processes. Contaminant inputs can damage downstream coastal zone ecosystem function and resources including fisheries, induce harmful algal blooms and feedback to the atmosphere via marine emissions. The scale of influence of megacities in the coastal zone is hundreds to thousands of kilometers in the atmosphere and tens to hundreds of kilometers in the ocean. We list research needs to further our understanding of coastal megacities with the ultimate aim to improve their environmental management.


Assuntos
Atmosfera , Ecossistema , Biologia Marinha , Urbanização , Clima , Eutrofização , Efeito Estufa , Poluentes da Água/análise
13.
Front Microbiol ; 3: 89, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22435065

RESUMO

Microbial community structures in deep-sea hydrothermal vents fields are constrained by available energy yields provided by inorganic redox reactions, which are in turn controlled by chemical composition of hydrothermal fluids. In the past two decades, geochemical and microbiological studies have been conducted in deep-sea hydrothermal vents at three geographically different areas of the Southern Mariana Trough (SMT). A variety of geochemical data of hydrothermal fluids and an unparalleled microbiological dataset of various samples (i.e., sulfide structures of active vents, iron-rich mats, borehole fluids, and ambient seawater) are available for comparative analyses. Here, we summarize the geochemical and microbiological characteristics in the SMT and assess the relationship between the microbial community structures and the fluid geochemistry in the SMT by thermodynamic modeling. In the high temperature vent fluids, aerobic sulfide-oxidation has the potential to yield large amounts of bioavailable energy in the vent fluids, which is consistent with the detection of species related to sulfide-oxidizing bacteria (such as Thiomicrospira in the Gammaproteobacteria and Sulfurimonas in the Epsilonproteobacteria). Conversely, the bioavailable energy yield from aerobic iron-oxidation reactions in the low-temperature fluids collected from man-made boreholes and several natural vents were comparable to or higher than those from sulfide-oxidation. This is also consistent with the detection of species related to iron-oxidizing bacteria (Mariprofundus in the Zetaproteobacteria) in such low-temperature samples. The results of combination of microbiological, geochemical, and thermodynamic analyses in the SMT provide novel insights into the presence and significance of iron-based microbial ecosystems in deep-sea hydrothermal fields.

14.
Sci Rep ; 2: 270, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22355782

RESUMO

The impacts of the M9.0 Tohoku Earthquake on deep-sea environment were investigated 36 and 98 days after the event. The light transmission anomaly in the deep-sea water after 36 days became atypically greater (∼35%) and more extensive (thickness ∼1500 m) near the trench axis owing to the turbulent diffusion of fresh seafloor sediment, coordinated with potential seafloor displacement. In addition to the chemical influx associated with sediment diffusion, an influx of (13)C-enriched methane from the deep sub-seafloor reservoirs was estimated. This isotopically unusual methane influx was possibly triggered by the earthquake and its aftershocks that subsequently induced changes in the sub-seafloor hydrogeologic structures. The whole prokaryotic biomass and the development of specific phylotypes in the deep-sea microbial communities could rise and fall at 36 and 98 days, respectively, after the event. We may capture the snap shots of post-earthquake disturbance in deep-sea chemistry and microbial community responses.

15.
Rapid Commun Mass Spectrom ; 25(21): 3351-9, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22006399

RESUMO

We have developed a new automated analytical system that employs a continuous flow isotope ratio mass spectrometer to determine the stable hydrogen isotopic composition (δD) of nanomolar quantities of molecular hydrogen (H(2)) in an air sample. This method improves previous methods to attain simpler and lower-cost analyses, especially by avoiding the use of expensive or special devices, such as a Toepler pump, a cryogenic refrigerator, and a special evacuation system to keep the temperature of a coolant under reduced pressure. Instead, the system allows H(2) purification from the air matrix via automatic multi-step gas chromatographic separation using the coolants of both liquid nitrogen (77 K) and liquid nitrogen + ethanol (158 K) under 1 atm pressure. The analytical precision of the δD determination using the developed method was better than 4‰ for >5 nmol injections (250 mL STP for 500 ppbv air sample) and better than 15‰ for 1 nmol injections, regardless of the δD value, within 1 h for one sample analysis. Using the developed system, the δD values of H(2) can be quantified for atmospheric samples as well as samples of representative sources and sinks including those containing small quantities of H(2) , such as H(2) in soil pores or aqueous environments, for which there is currently little δD data available. As an example of such trace H(2) analyses, we report here the isotope fractionations during H(2) uptake by soils in a static chamber. The δD values of H(2) in these H(2)-depleted environments can be useful in constraining the budgets of atmospheric H(2) by applying an isotope mass balance model.

16.
Microb Ecol ; 60(1): 214-25, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20473491

RESUMO

Although deep subterranean crystalline rocks are known to harbor microbial ecosystems, geochemical factors that constrain the biomass, diversity, and metabolic activities of microorganisms remain to be clearly defined. To better understand the geochemical and microbiological relationships, we characterized granitic groundwater collected from a 1,148- to 1,169-m-deep borehole interval at the Mizunami Underground Research Laboratory site, Japan, in 2005 and 2008. Geochemical analyses of the groundwater samples indicated that major electron acceptors, such as NO(3)(-) and SO(4)(2-), were not abundant, while dissolved organic carbon (not including organic acids), CH(4) and H(2), was moderately rich in the groundwater sample collected in 2008. The total number of acridine orange-stained cells in groundwater samples collected in 2005 and 2008 were 1.1 x 10(4) and 5.2 x 10(4) cells/mL, respectively. In 2005 and 2008, the most common phylotypes determined by 16S rRNA gene sequence analysis were both related to Thauera spp., the cultivated members of which can utilize minor electron donors, such as aromatic and aliphatic hydrocarbons. After a 3-5-week incubation period with potential electron donors (organic acids or CH(4) + H(2)) and with/without electron acceptors (O(2) or NO(3)(-)), dominant microbial populations shifted to Brevundimonas spp. These geomicrobiological results suggest that deep granitic groundwater has been stably colonized by Thauera spp. probably owing to the limitation of O(2), NO(3)(-), and organic acids.


Assuntos
Caulobacteraceae/genética , Água Doce/química , Água Doce/microbiologia , Thauera/genética , Microbiologia da Água , Caulobacteraceae/isolamento & purificação , Caulobacteraceae/metabolismo , DNA Bacteriano/genética , Ecossistema , Japão , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Thauera/isolamento & purificação , Thauera/metabolismo
17.
Microbes Environ ; 25(4): 288-94, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21576884

RESUMO

The galatheid crab, Shinkaia crosnieri (Decapoda: Galatheidae), forms dense colonies in the Iheya North and Hatoma Knoll deep-sea hydrothermal fields and has numerous setae covered with filamentous epibiotic microorganisms. Molecular phylogenetic analyses revealed that the epibiotic communities in S. crosnieri consisted mainly of yet-uncultivated phylotypes within Epsilonproteobacteria and Gammaproteobacteria in both hydrothermal vent fields. Uptake experiments using (13)C-labeled tracers clearly demonstrated that both H(13)CO(3)(-) and (13)CH(4) were assimilated into not only the epibiotic microbial communities associated with the setae, but also the epibiont-free tissue of living S. crosnieri. In addition, the incorporation of H(13)CO(3)(-) into the microbial cells was strongly stimulated by the presence of reduced sulfur compounds but not by H(2). In conclusion, the uptake experiments suggested that sulfur-oxidizing chemolithoautotrophic and methanotrophic production by the epibionts provides the nutrition for S. crosnieri.


Assuntos
Anomuros/microbiologia , Biodiversidade , Proteobactérias/isolamento & purificação , Frutos do Mar/microbiologia , Animais , Crescimento Quimioautotrófico , Dados de Sequência Molecular , Filogenia , Proteobactérias/classificação , Proteobactérias/genética , Proteobactérias/metabolismo , Água do Mar/microbiologia , Enxofre/metabolismo
18.
Appl Environ Microbiol ; 76(4): 1198-211, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20023079

RESUMO

A variety of archaeal lineages have been identified using culture-independent molecular phylogenetic surveys of microbial habitats occurring in deep-sea hydrothermal environments such as chimney structures, sediments, vent emissions, and chemosynthetic macrofauna. With the exception of a few taxa, most of these archaea have not yet been cultivated, and their physiological and metabolic traits remain unclear. In this study, phylogenetic diversity and distribution profiles of the archaeal genes encoding small subunit (SSU) rRNA, methyl coenzyme A (CoA) reductase subunit A, and the ammonia monooxygenase large subunit were characterized in hydrothermally influenced sediments at the Yonaguni Knoll IV hydrothermal field in the Southern Okinawa Trough. Sediment cores were collected at distances of 0.5, 2, or 5 m from a vent emission (90 degrees C). A moderate temperature gradient extends both horizontally and vertically (5 to 69 degrees C), indicating the existence of moderate mixing between the hydrothermal fluid and the ambient sediment pore water. The mixing of reductive hot hydrothermal fluid and cold ambient sediment pore water establishes a wide spectrum of physical and chemical conditions in the microbial habitats that were investigated. Under these different physico-chemical conditions, variability in archaeal phylotype composition was observed. The relationship between the physical and chemical parameters and the archaeal phylotype composition provides important insight into the ecophysiological requirements of uncultivated archaeal lineages in deep-sea hydrothermal vent environments, giving clues for approximating culture conditions to be used in future culturing efforts.


Assuntos
Archaea/genética , Archaea/isolamento & purificação , Sedimentos Geológicos/microbiologia , Água do Mar/microbiologia , Archaea/classificação , Archaea/enzimologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Sequência de Bases , Primers do DNA/genética , Ecossistema , Genes Arqueais , Variação Genética , Japão , Dados de Sequência Molecular , Oxirredutases/genética , Filogenia , RNA Arqueal/genética , RNA Ribossômico/genética , Temperatura
19.
Anal Chem ; 81(21): 9021-6, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19791769

RESUMO

We developed an equilibrator inlet-proton transfer reaction-mass spectrometry (EI-PTR-MS) method for fast detection of dimethyl sulfide (DMS) dissolved in seawater. Dissolved DMS extracted by bubbling pure nitrogen through the sample was continuously directed to the PTR-MS instrument. The equilibration of DMS between seawater and the carrier gas, and the response time of the system, were evaluated in the laboratory. DMS reached equilibrium with an overall response time of 1 min. The detection limit (50 pmol L(-1) at 5 s integration) was sufficient for detection of DMS concentrations in the open ocean. The EI-PTR-MS instrument was deployed during a research cruise in the western North Pacific Ocean. Comparison of the EI-PTR-MS results with results obtained by means of membrane tube equilibrator-gas chromatography/mass spectrometry agreed reasonably well on average (R(2) = 0.99). EI-PTR-MS captured temporal variations of dissolved DMS concentrations, including elevated peaks associated with patches of high biogenic activity. These results demonstrate that the EI-PTR-MS technique was effective for highly time-resolved measurements of DMS in the open ocean. Further measurements will improve our understanding of the biogeochemical mechanisms of the production, consumption, and distribution of DMS on the ocean surface and, hence, the air-sea flux of DMS, which is a climatically important species.

20.
Appl Environ Microbiol ; 75(22): 7153-62, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19783748

RESUMO

The potential for microbial nitrogen fixation in the anoxic methane seep sediments in a mud volcano, the number 8 Kumano Knoll, was characterized by molecular phylogenetic analyses. A total of 111 of the nifH (a gene coding a nitrogen fixation enzyme, Fe protein) clones were obtained from different depths of the core sediments, and the phylogenetic analysis of the clones indicated the genetic diversity of nifH genes. The predominant group detected (methane seep group 2), representing 74% of clonal abundance, was phylogenetically related to the nifH sequences obtained from the Methanosarcina species but was most closely related to the nifH sequences potentially derived from the anoxic methanotrophic archaea (ANME-2 archaea). The recovery of the nif gene clusters including the nifH sequences of the methane seep group 2 and the subsequent reverse transcription-PCR detection of the nifD and nifH genes strongly suggested that the genetic components of the gene clusters would be operative for the in situ assimilation of molecular nitrogen (N(2)) by the host microorganisms. DNA-based quantitative PCR of the archaeal 16S rRNA gene, the group-specific mcrA (a gene encoding the methyl-coenzyme M reductase alpha subunit) gene, and the nifD and nifH genes demonstrated the similar distribution patterns of the archaeal 16S rRNA gene, the mcrA groups c-d and e, and the nifD and nifH genes through the core sediments. These results supported the idea that the anoxic methanotrophic archaea ANME-2c could be the microorganisms hosting the nif gene clusters and could play an important role in not only the in situ carbon (methane) cycle but also the nitrogen cycle in subseafloor sediments.


Assuntos
Archaea/genética , Archaea/metabolismo , Sedimentos Geológicos/microbiologia , Fixação de Nitrogênio , Anaerobiose , Archaea/classificação , Archaea/enzimologia , Clonagem Molecular , DNA Arqueal/genética , Genes Arqueais/genética , Variação Genética , Japão , Metano/metabolismo , Dados de Sequência Molecular , Família Multigênica/genética , Fixação de Nitrogênio/genética , Oxirredutases/genética , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/química , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...