Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 41(15): 3523-6, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27472609

RESUMO

We report a numerical and experimental study of an on-chip optical spectrometer, utilizing propagating surface plasmon polaritons in the telecom spectral range. The device is based on two holographic gratings, one for coupling, and the other for decoupling free-space radiation with the surface plasmons. This 800 µm×100 µm on-chip spectrometer resolves 17 channels spectrally separated by 3.1 nm, spanning a freely tunable spectral window, and is based on standard lithography fabrication technology. We propose two potential applications for this new device; the first employs the holographic control over the amplitude and phase of the input spectrum, for intrinsically filtering unwanted frequencies, like pump radiation in Raman spectroscopy. The second prospect utilizes the unique plasmonic field enhancement at the metal-dielectric boundary for the spectral analysis of very small samples (e.g., Mie scatterers) placed between the two gratings.

2.
Phys Rev E ; 93(1): 013127, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26871174

RESUMO

We demonstrate both theoretically and experimentally propagation dynamics of surface gravity water-wave pulses, having Hermite-Gauss envelopes. We show that these waves propagate self-similarly along an 18-m wave tank, preserving their general Hermite-Gauss envelopes in both the linear and the nonlinear regimes. The measured surface elevation wave groups enable observing the envelope phase evolution of both nonchirped and linearly frequency chirped Hermite-Gauss pulses, hence allowing us to measure Gouy phase shifts of high-order Hermite-Gauss pulses for the first time. Finally, when increasing pulse amplitude, nonlinearity becomes essential and the second harmonic of Hermite-Gauss waves was observed. We further show that these generated second harmonic bound waves still exhibit self-similar Hermite-Gauss shapes along the tank.

3.
Opt Lett ; 40(22): 5411-4, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26565887

RESUMO

Special beams, including the Airy beam and the vortex-embedded Airy beam, draw much attention due to their unique features and promising applications. Therefore, it is necessary to devise a straightforward method for measuring these peculiar features of the beams with ease. Hence we present the astigmatic transformation of Airy and Airy-vortex beam. The "acceleration" coefficient of the Airy beam is directly determined from a single image by fitting the astigmatically transformed beam to an analytic expression. In addition, the orbital angular momentum of optical vortex in Airy-vortex beam is measured directly using a single image.

4.
Opt Lett ; 40(20): 4703-6, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26469599

RESUMO

We introduce, theoretically and experimentally, the concept of a diffraction-free "super-Airy" beam, in which the main lobe is reduced to nearly half in size with increased intensity in comparison to the main lobe of the optical Airy beam, while maintaining the same transverse acceleration. It is also observed that when the super-Airy main lobe is blocked during propagation, it recovers to the original size faster than the Airy main lobe.

5.
Phys Rev Lett ; 115(3): 034501, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26230797

RESUMO

We observe the propagation dynamics of surface gravity water waves, having an Airy function envelope, in both the linear and the nonlinear regimes. In the linear regime, the shape of the envelope is preserved while propagating in an 18-m water tank, despite the inherent dispersion of the wave packet. The Airy wave function can propagate at a velocity that is slower (or faster if the Airy envelope is inverted) than the group velocity. Furthermore, the introduction of the Airy wave packet as surface water waves enables the observation of its position-dependent chirp and cubic-phase offset, predicted more than 35 years ago, for the first time. When increasing the envelope of the input Airy pulse, nonlinear effects become dominant, and are manifested by the generation of water-wave solitons.

6.
Phys Rev Lett ; 114(9): 096102, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25793830

RESUMO

New forms of electron beams have been intensively investigated recently, including vortex beams carrying orbital angular momentum, as well as Airy beams propagating along a parabolic trajectory. Their traits may be harnessed for applications in materials science, electron microscopy, and interferometry, and so it is important to measure their properties with ease. Here, we show how one may immediately quantify these beams' parameters without need for additional fabrication or nonstandard microscopic tools. Our experimental results are backed by numerical simulations and analytic derivation.

7.
Phys Rev Lett ; 115(25): 254501, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26722925

RESUMO

Linear gravity water waves are highly dispersive; therefore, the spreading of initially short wave trains characterizes water surface waves, and is a universal property of a dispersive medium. Only if there is sufficient nonlinearity does this envelope admit solitary solutions which do not spread and remain in fixed forms. Here, in contrast to the nonlinear localized wave packets, we present both theoretically and experimentally a new type of linearly nondispersive water wave, having a cosine-Gauss envelope, as well as its higher-order Hermite cosine-Gauss variations. We show that these waves preserve their width despite the inherent dispersion while propagating in an 18-m wave tank, accompanied by a slowly varying carrier-envelope phase. These wave packets exhibit self-healing; i.e., they are restored after bypassing an obstacle. We further demonstrate that these nondispersive waves are robust to weakly nonlinear perturbations. In the strong nonlinear regime, symmetry breaking of these waves is observed, but their cosine-Gauss shapes are still approximately preserved during propagation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...