Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Cancer ; 139(6): 1340-9, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27170265

RESUMO

Gas6 and its receptors Axl, Mer and Tyro-3 (TAM) are highly expressed in human malignancy suggesting that signaling through this axis may be tumor-promoting. In pancreatic ductal adenocarcinoma (PDAC), Gas6 and the TAM receptor Axl are frequently co-expressed and their co-expression correlates with poor survival. A strategy was devised to generate fully human neutralizing antibodies against Gas6 using XenoMouse® technology. Hybridoma supernatants were selected based on their ability to inhibit Gas6 binding to the receptor Axl and block Gas6-induced Axl phosphorylation in human cells. Two purified antibodies isolated from the screened hybridomas, GMAB1 and GMAB2, displayed optimal cellular potency which was comparable to that of the soluble extracellular domain of the receptor Axl (Axl-Fc). In vivo characterization of GMAB1 was conducted using a pharmacodynamic assay that measured inhibition of Gas6-induced Akt activation in the mouse spleen. Treatment of mice with a single dose (100-1000 µg) of GMAB1 led to greater than 90% inhibition of Gas6-induced phosphorylated Akt (pAkt) for up to 72 hr. Based on the target coverage observed in the PD assay, the efficacy of GMAB1 was tested against human pancreatic adenocarcinoma xenografts. At doses of 50 µg and 150 µg, twice weekly, GMAB1 was able to inhibit 55% and 76% of tumor growth, respectively (p < 0.001 for both treatments vs. control Ig). When combined with gemcitabine, GMAB1 significantly inhibited tumor growth compared to either agent alone (p < 0.001). Together, the data suggest that Gas6 neutralization may be important as a potential strategy for the treatment of PDAC.


Assuntos
Anticorpos Neutralizantes/farmacologia , Anticorpos/farmacologia , Comunicação Autócrina/efeitos dos fármacos , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Animais , Anticorpos/imunologia , Anticorpos Neutralizantes/imunologia , Antineoplásicos/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/imunologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Humanos , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/imunologia , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Receptor Tirosina Quinase Axl , Neoplasias Pancreáticas
2.
PLoS One ; 11(2): e0147254, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26840340

RESUMO

Pancreatic amyloid formation by islet amyloid polypeptide (IAPP) is a hallmark pathological feature of type 2 diabetes. IAPP is stored in the secretory granules of pancreatic beta-cells and co-secreted with insulin to maintain glucose homeostasis. IAPP is innocuous under homeostatic conditions but imbalances in production or processing of IAPP may result in homodimer formation leading to the rapid production of cytotoxic oligomers and amyloid fibrils. The consequence is beta-cell dysfunction and the accumulation of proteinaceous plaques in and around pancreatic islets. Beta-site APP-cleaving enzyme 2, BACE2, is an aspartyl protease commonly associated with BACE1, a related homolog responsible for amyloid processing in the brain and strongly implicated in Alzheimer's disease. Herein, we identify two distinct sites of the mature human IAPP sequence that are susceptible to BACE2-mediated proteolytic activity. The result of proteolysis is modulation of human IAPP fibrillation and human IAPP protein degradation. These results suggest a potential therapeutic role for BACE2 in type 2 diabetes-associated hyperamylinaemia.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Sequência de Aminoácidos , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Animais , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Linhagem Celular , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Humanos , Insulina/metabolismo , Insulina/farmacologia , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/genética , Espectrometria de Massas , Camundongos , Dados de Sequência Molecular , Mutação , Placa Amiloide/metabolismo , Proteólise/efeitos dos fármacos , Proteínas Recombinantes , Especificidade por Substrato
3.
Biochemistry ; 51(50): 10056-65, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-23078371

RESUMO

The circulation half-life of a potential therapeutic can be increased by fusing the molecule of interest (an active peptide, the extracellular domain of a receptor, an enzyme, etc.) to the Fc fragment of a monoclonal antibody. For the fusion protein to be a successful therapeutic, it must be stable to process and long-term storage conditions, as well as to physiological conditions. The stability of the Fc used is critical for obtaining a successful therapeutic protein. The effects of pH, temperature, and salt on the stabilities of Escherichia coli- and Chinese hamster ovary cell (CHO)-derived IgG1 Fc high-order structure were probed using a variety of biophysical techniques. Fc molecules derived from both E. coli and CHO were compared. The IgG1 Fc molecules from both sources (glycosylated and aglycosylated) are folded at neutral pH and behave similarly upon heat- and low pH-induced unfolding. The unfolding of both IgG1 Fc molecules occurs via a multistep unfolding process, with the tertiary structure and C(H)2 domain unfolding first, followed by changes in the secondary structure and C(H)3 domain. The acid-induced unfolding of IgG1 Fc molecules is only partially reversible, with the formation of high-molecular weight species. The CHO-derived Fc protein (glycosylated) is more compact (smaller hydrodynamic radius) than the E. coli-derived protein (aglycosylated) at neutral pH. Unfolding is dependent on pH and salt concentration. The glycosylated C(H)2 domain melts at a temperature 4-5 °C higher than that of the aglycosylated domain, and the low-pH-induced unfolding of the glycosylated Fc molecule occurs at a pH ~0.5 pH unit lower than that of the aglycosylated protein. The difference observed between E. coli- and CHO-derived Fc molecules primarily involves the C(H)2 domain, where the glycosylation of the Fc resides.


Assuntos
Proteínas de Escherichia coli/química , Fragmentos Fc das Imunoglobulinas/química , Imunoglobulina G/química , Estabilidade Proteica/efeitos dos fármacos , Proteínas Recombinantes de Fusão/química , Cloreto de Sódio/farmacologia , Animais , Células CHO , Cricetinae , Cricetulus , Escherichia coli/imunologia , Glicosilação , Humanos , Concentração de Íons de Hidrogênio , Conformação Proteica/efeitos dos fármacos , Temperatura
4.
Mol Cancer Ther ; 9(2): 400-9, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20124448

RESUMO

AMG 102 is a fully human monoclonal antibody that selectively targets and neutralizes hepatocyte growth factor/scatter factor (HGF/SF). A detailed biochemical and functional characterization of AMG 102 was done to support its clinical development for the treatment of cancers dependent on signaling through the HGF/SF:c-Met pathway. In competitive equilibrium binding experiments, AMG 102 bound to human and cynomolgus monkey HGF with affinities of approximately 19 pmol/L and 41 pmol/L, respectively. However, AMG 102 did not detect mouse or rabbit HGF on immunoblots. Immunoprecipitation experiments showed that AMG 102 preferentially bound to the mature, active form of HGF, and incubation of AMG 102/HGF complexes with kallikrein protease indicated that AMG 102 had no apparent effect on proteolytic processing of the inactive HGF precursor. AMG 102 inhibited human and cynomolgus monkey HGF-induced c-Met autophosphorylation in PC3 cells with IC(50) values of 0.12 nmol/L and 0.24 nmol/L, respectively. AMG 102 also inhibited cynomolgus monkey HGF-induced migration of human MDA-MB-435 cells but not rat HGF-induced migration of mouse 4T1 cells. Epitope-mapping studies of recombinant HGF molecules comprising human/mouse chimeras and human-to-mouse amino acid substitutions showed that amino acid residues near the NH(2)-terminus of the beta-chain are critical for AMG 102 binding. Bound AMG 102 protected one trypsin protease cleavage site near the NH(2)-terminus of the beta-chain of human HGF, further substantiating the importance of this region for AMG 102 binding. Currently, AMG 102 is in phase II clinical trials in a variety of solid tumor indications. Mol Cancer Ther; 9(2); 400-9.


Assuntos
Anticorpos Monoclonais/química , Fator de Crescimento de Hepatócito/química , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados , Mapeamento de Epitopos , Humanos , Immunoblotting , Concentração Inibidora 50 , Macaca fascicularis , Camundongos , Biblioteca de Peptídeos , Fosforilação , Primatas , Coelhos , Proteínas Recombinantes/química
5.
Anal Biochem ; 378(1): 53-9, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18358225

RESUMO

Silent information regulator or sirtuin (SIRT) enzymes are beta-nicotinamide adenine dinucleotide (oxidized) (NAD(+))-dependent class III histone deacetylases. In this paper, two distinct assays to measure SIRT1 activity are described: a microfluidic mobility shift assay utilizing a fluorophore-labeled peptide substrate and a bioluminescence assay based upon quantitation of remaining NAD(+). The mobility shift assay involves the electrophoretic separation of an N-acetyl-lysine-containing peptide substrate from deacetylated product which bears an additional positive charge. Interference from fluorescent compounds is minimized during screening by direct visualization of separated fluorophore-labeled substrate and product. A preferred peptide substrate for SIRT1 was identified using this assay. The NAD(+) bioluminescence assay couples NAD(+) consumption to the bacterial luciferase-catalyzed oxidation of decanal. This assay does not require synthesis of a labeled peptide and is applicable to sirtuins of any specificity with respect to peptide substrate. The stoichiometry between NAD(+) consumption and peptide deacetylation was shown to be 1:1 by the NAD(+) bioluminescence assay. Kinetic parameters of peptide and NAD(+) cosubstrates and IC(50) values of standard reference inhibitors determined in either assay were similar. With robust Z' values (0.7), both assays are amenable to high-throughput screening.


Assuntos
Bioensaio/métodos , Medições Luminescentes/métodos , Microfluídica/métodos , Sirtuínas/análise , Sirtuínas/metabolismo , Acetilação , Sequência de Aminoácidos , Catálise , Ativação Enzimática , Inibidores Enzimáticos/química , Humanos , Dados de Sequência Molecular , NAD/análise , NAD/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Sirtuína 1 , Sirtuínas/antagonistas & inibidores
6.
FEBS Lett ; 581(5): 995-9, 2007 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-17306259

RESUMO

11beta-Hydroxysteroid dehydrogenase type 1 is a homodimer where the carboxyl terminus of one subunit covers the active site of the dimer partner. Based on the crystal structure with CHAPS, the carboxyl terminal tyrosine 280 (Y280) has been postulated to interact with the substrate/inhibitor at the binding pocket of the dimer partner. However, the co-crystal structure with carbenoxolone argues against this role. To clarify and reconcile these findings, here we report our mutagenesis data and demonstrate that Y280 is not involved in substrate binding but rather plays a selective role in inhibitor binding. The involvement of Y280 in inhibitor binding depends on the inhibitor chemical structure. While Y280 is not involved in the binding of carbenoxolone, it is critical for the binding of glycyrrhetinic acid.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/química , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Animais , Sítios de Ligação , Células CHO , Carbenoxolona/metabolismo , Domínio Catalítico , Cricetinae , Cricetulus , Inibidores Enzimáticos/metabolismo , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Tirosina/química
7.
Biochim Biophys Acta ; 1764(4): 824-30, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16580270

RESUMO

The catalytic motif (YSASK) at the active site of 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) is conserved across different species. The crystal structures of the human, guinea pig and mouse enzymes have been resolved to help identify the non-conserved residues at the active site. A tyrosine residue (Y177) upstream of the catalytic motif in human 11beta-HSD1 represents the largest difference at the active sites between the human and the rodent enzyme where the corresponding residue is glutamine. Although Y177 was postulated as a potential hydrogen bond donor in substrate binding in crystal structure-based modeling, no experimental evidence is available to support this notion. Here, we report that Y177 is not a hydrogen bond donor in substrate binding because removal of the hydroxyl group from its side chain by mutagenesis (Y177F) did not significantly change the Km value for cortisone. However, removal of the hydrophobic side chain by changing tyrosine to alanine (Y177A) or substitution with a hydrophilic side chain by changing tyrosine to glutamine (Y177Q) increased Km values for cortisone. These data suggest that Y177 is involved in substrate binding through its hydrophobic side chain but not by hydrogen bonding. In addition, the three mutations had little effect on the binding of the rodent substrate 11-dehydrocorticosterone, suggesting that Y177 does not confer substrate specificity. However, the same mutations reduced the affinity of the licorice derived 11beta-HSD1 inhibitor glycyrrhetinic acid by about 6- to 10-fold. Interestingly, the affinity of carbenoxolone, the hemisuccinate ester of glycyrrhetinic acid with a similar potency against the wildtype enzyme, was not drastically affected by the same mutations at Y177. These data suggest that Y177 has a unique role in inhibitor binding. Molecular modeling with glycyrrhetinic acid led to findings consistent with the experimental data and provided potential interaction mechanisms. Our data suggest that Y177 plays an important role in both substrate and inhibitor binding but it is unlikely a hydrogen bond donor for the substrate.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/química , Sítios de Ligação , Tirosina/química , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Células CHO , Carbenoxolona/farmacologia , Cortisona/metabolismo , Cricetinae , Cricetulus , Ácido Glicirretínico/farmacologia , Humanos , Hidrocortisona/metabolismo , Ligação de Hidrogênio , Cinética , Modelos Moleculares , Especificidade por Substrato
8.
Cancer Res ; 66(3): 1721-9, 2006 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-16452232

RESUMO

c-Met is a well-characterized receptor tyrosine kinase for hepatocyte growth factor (HGF). Compelling evidence from studies in human tumors and both cellular and animal tumor models indicates that signaling through the HGF/c-Met pathway mediates a plethora of normal cellular activities, including proliferation, survival, migration, and invasion, that are at the root of cancer cell dysregulation, tumorigenesis, and tumor metastasis. Inhibiting HGF-mediated signaling may provide a novel therapeutic approach for treating patients with a broad spectrum of human tumors. Toward this goal, we generated and characterized five different fully human monoclonal antibodies that bound to and neutralized human HGF. Antibodies with subnanomolar affinities for HGF blocked binding of human HGF to c-Met and inhibited HGF-mediated c-Met phosphorylation, cell proliferation, survival, and invasion. Using a series of human-mouse chimeric HGF proteins, we showed that the neutralizing antibodies bind to a unique epitope in the beta-chain of human HGF. Importantly, these antibodies inhibited HGF-dependent autocrine-driven tumor growth and caused significant regression of established U-87 MG tumor xenografts. Treatment with anti-HGF antibody rapidly inhibited tumor cell proliferation and significantly increased the proportion of apoptotic U-87 MG tumor cells in vivo. These results suggest that an antibody to an epitope in the beta-chain of HGF has potential as a novel therapeutic agent for treating patients with HGF-dependent tumors.


Assuntos
Anticorpos Monoclonais/farmacologia , Glioblastoma/terapia , Fator de Crescimento de Hepatócito/imunologia , Proteínas Proto-Oncogênicas c-met/metabolismo , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Processos de Crescimento Celular/efeitos dos fármacos , Processos de Crescimento Celular/imunologia , Linhagem Celular Tumoral , Epitopos/imunologia , Feminino , Glioblastoma/imunologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Fator de Crescimento de Hepatócito/antagonistas & inibidores , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Imunoglobulina G/biossíntese , Imunoglobulina G/química , Imunoglobulina G/imunologia , Camundongos , Camundongos Nus , Fosforilação , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...