Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small Methods ; : e2301425, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38389181

RESUMO

Aberration-corrected scanning transmission electron microscopy (STEM) has been advancing resolution, sensitivity, and microanalysis due to the intense demands of atomic-level microstructural investigations. Recent STEM technologies require preparing a thin lamella whose thickness is ideally below 20 nm. Although focused-ion-beam/scanning-electron-microscopy (FIB/SEM) is an established method to prepare a high-quality lamella, nanometer-level controllability of lamella thickness remains a fundamental problem. Here, the robust preparation of a sub-20-nm-thin lamella is demonstrated by FIB/SEM with real-time feedback from thickness quantification. The lamella thickness is quantified by back-scattered-electron SEM imaging in a thickness range between 0 and 100 nm without any reference to numerical simulation. Using real-time feedback from the thickness quantification, the FIB/SEM terminates thinning a lamella at a targeted thickness. The real-time feedback system eventually provides 1-nm-level controllability of the lamella thickness. As a proof-of-concept, a near-10-nm-thin lamella is prepared from a SrTiO3 crystal by our methodology. Moreover, the lamella thickness is controllable at a target heterointerface. Thus, a sub-20-nm-thin lamella is prepared from a LaAlO3 /SrTiO3 heterointerface. The methodology offers a robust and operator-independent platform to prepare a sub-20-nm-thin lamella from various materials. This platform will broadly impact aberration-corrected STEM studies in materials science and the semiconductor industry.

2.
Sci Rep ; 11(1): 21599, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34732755

RESUMO

Aberration-corrected scanning transmission electron microscopy (STEM) is widely used for atomic-level imaging of materials but severely requires damage-free and thin samples (lamellae). So far, the preparation of the high-quality lamella from a bulk largely depends on manual processes by a skilled operator. This limits the throughput and repeatability of aberration-corrected STEM experiments. Here, inspired by the recent successes of "robot scientists", we demonstrate robotic fabrication of high-quality lamellae by focused-ion-beam (FIB) with automation software. First, we show that the robotic FIB can prepare lamellae with a high success rate, where the FIB system automatically controls rough-milling, lift-out, and final-thinning processes. Then, we systematically optimized the FIB parameters of the final-thinning process for single crystal Si. The optimized Si lamellae were evaluated by aberration-corrected STEM, showing atomic-level images with 55 pm resolution and quantitative repeatability of the spatial resolution and lamella thickness. We also demonstrate robotic fabrication of high-quality lamellae of SrTiO3 and sapphire, suggesting that the robotic FIB system may be applicable for a wide range of materials. The throughput of the robotic fabrication was typically an hour per lamella. Our robotic FIB will pave the way for the operator-free, high-throughput, and repeatable fabrication of the high-quality lamellae for aberration-corrected STEM.

3.
Sci Adv ; 6(41)2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33028521

RESUMO

Phase separation often leads to gelation in soft and biomatter. For colloidal suspensions, we have a consensus that gels form by the dynamical arrest of phase separation. In this gelation, percolation of the phase-separated structure occurs before the dynamical arrest, leading to the generation of mechanical stress in the gel network. Here, we find a previously unrecognized type of gelation in dilute colloidal suspensions, in which percolation occurs after the local dynamical arrest, i.e., the formation of mechanically stable, rigid clusters. Thus, topological percolation generates little mechanical stress, and the resulting gel is almost stress-free when formed. We also show that the selection of these two types of gelation (stressed and stress-free) is determined solely by the volume fraction as long as the interaction is short-ranged. This universal classification of gelation of particulate systems may have a substantial impact on material and biological science.

4.
Sci Adv ; 5(5): eaav6090, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31172025

RESUMO

Colloidal gels have unique mechanical and transport properties that stem from their bicontinuous nature, in which a colloidal network is intertwined with a viscous solvent, and have found numerous applications in foods, cosmetics, and construction materials and for medical applications, such as cartilage replacements. So far, our understanding of the process of colloidal gelation is limited to long-time dynamical effects, where gelation is viewed as a phase separation process interrupted by the glass transition. However, this purely out-of-equilibrium thermodynamic picture does not address the emergence of mechanical stability. With confocal microscopy experiments, we reveal that mechanical metastability is reached only after isotropic percolation of locally isostatic environments, establishing a direct link between the load-bearing ability of gels and the isostaticity condition. Our work suggests an operative description of gels based on mechanical equilibrium and isostaticity, providing the physical basis for the stability and rheology of these materials.

5.
Nat Mater ; 16(10): 1022-1028, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28759032

RESUMO

Viscoelastic phase separation of colloidal suspensions can be interrupted to form gels either by glass transition or by crystallization. With a new confocal microscopy protocol, we follow the entire kinetics of phase separation, from homogeneous phase to different arrested states. For the first time in experiments, our results unveil a novel crystallization pathway to sponge-like porous crystal structures. In the early stages, we show that nucleation requires a structural reorganization of the liquid phase, called stress-driven ageing. Once nucleation starts, we observe that crystallization follows three different routes: direct crystallization of the liquid phase, the Bergeron process, and Ostwald ripening. Nucleation starts inside the reorganized network, but crystals grow past it by direct condensation of the gas phase on their surface, driving liquid evaporation, and producing a network structure different from the original phase separation pattern. We argue that similar crystal-gel states can be formed in monatomic and molecular systems if the liquid phase is slow enough to induce viscoelastic phase separation, but fast enough to prevent immediate vitrification. This provides a novel pathway to form nanoporous crystals of metals and semiconductors without dealloying, which may be important for catalytic, optical, sensing, and filtration applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...