Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 17(2): 292-298, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35020348

RESUMO

Extrahepatic targeted delivery of oligonucleotides, such as small interfering RNA (siRNA) and antisense oligonucleotides (ASOs), is an attractive technology for the development of nucleic acid-based medicines. To target CD22-expressing B cells, several drug platforms have shown promise, including antibodies, antibody-drug conjugates, and nanoparticles, but to date CD22-targeted delivery of oligonucleotide therapeutics has not been reported. Here we report the uptake and enhancement of siRNA gene expression knockdown in CD22-expressing B cells using a chemically stabilized and modified CD22 glycan ligand-conjugated siRNA. This finding has the potential to broaden the use of siRNA technology, opening up novel therapeutic opportunities, and presents an innovative approach for targeted delivery of siRNAs to B cell lymphomas.


Assuntos
Oligonucleotídeos Antissenso , Polissacarídeos , Técnicas de Silenciamento de Genes , Ligantes , Polissacarídeos/metabolismo , RNA Interferente Pequeno/genética
2.
Cancer Med ; 8(3): 1157-1168, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30735010

RESUMO

Keap1/Nrf2 pathway regulates the antioxidant stress response, detoxification response, and energy metabolism. Previous reports found that aberrant Keap1/Nrf2 pathway activation due to Kelch-like ECH-associated protein 1 (Keap1) mutations or Nuclear factor E2-related factor 2 (Nrf2) mutations induced resistance of cancer cells to chemotherapy and accelerated cell growth via the supply of nutrients. Therefore, Keap1/Nrf2 pathway activation is associated with a poor prognosis in many cancers. These previous findings suggested that inhibition of Keap1/Nrf2 pathway could be a target for anti-cancer therapies. To discover a small-molecule Keap1/Nrf2 pathway inhibitor, we conducted high-throughput screening in Keap1 mutant human lung cancer A549 cells using a transcriptional reporter assay. Through this screening, we identified the novel Keap1/Nrf2 pathway inhibitor K-563, which was isolated from actinomycete Streptomyces sp. K-563 suppressed the expression of Keap1/Nrf2 pathway downstream target genes or the downstream target protein, which induced suppression of GSH production, and activated reactive oxygen species production in A549 cells. K-563 also inhibited the expression of downstream target genes in other Keap1- or Nrf2-mutated cancer cells. Furthermore, K-563 exerted anti-proliferative activities in these mutated cancer cells. These in vitro analyses showed that K-563 was able to inhibit cell growth in Keap1- or Nrf2-mutated cancer cells by Keap1/Nrf2 pathway inhibition. K-563 also exerted synergistic combinational effects with lung cancer chemotherapeutic agents. An in vivo study in mice xenotransplanted with A549 cells to further explore the therapeutic potential of K-563 revealed that it also inhibited Keap1/Nrf2 pathway in lung cancer tumors. K-563, a novel Keap1/Nrf2 pathway inhibitor, may be a lead compound for development as an anti-cancer agent.


Assuntos
Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Streptomyces/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Genes Reporter , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Espectroscopia de Ressonância Magnética , Camundongos , Estrutura Molecular , Mutação , Fator 2 Relacionado a NF-E2/genética , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Bioorg Med Chem Lett ; 27(4): 834-840, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28108248

RESUMO

Affinity purification is one of the most prevalent methods for the target identification of small molecules. Preparation of an appropriate chemical for immobilization, however, is a tedious and time-consuming process. A decade ago, a photoreaction method for generating affinity beads was reported, where compounds are mixed with agarose beads carrying a photoreactive group (aryldiazirine) and then irradiated with ultraviolet light under dry conditions to form covalent attachment. Although the method has proven useful for identifying drug targets, the beads suffer from inefficient ligand incorporation and tend to shrink and aggregate, which can cause nonspecific binding and low reproducibility. We therefore decided to craft affinity beads free from these shortcomings without compromising the ease of preparation. We herein report a modified method; first, a compound of interest is mixed with a crosslinker having an activated ester and a photoreactive moiety on each end. This mixture is then dried in a glass tube and irradiated with ultraviolet light. Finally, the conjugates are dissolved and reacted with agarose beads with a primary amine. This protocol enabled us to immobilize compounds more efficiently (approximately 500-fold per bead compared to the original method) and generated beads without physical deterioration. We herein demonstrated that the new FK506-immobilized beads specifically isolated more FKBP12 than the original beads, thereby proving our method to be applicable to target identification experiments.


Assuntos
Preparações Farmacêuticas/química , Cromatografia de Afinidade , Diazometano/química , Ligantes , Microscopia , Preparações Farmacêuticas/isolamento & purificação , Preparações Farmacêuticas/efeitos da radiação , Rodaminas/química , Tacrolimo/química , Tacrolimo/isolamento & purificação , Proteína 1A de Ligação a Tacrolimo/química , Proteína 1A de Ligação a Tacrolimo/metabolismo , Raios Ultravioleta
4.
Int J Pharm ; 351(1-2): 250-8, 2008 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-17904317

RESUMO

A protein kinase inhibitor UCN-01 binds with high affinity to human alpha 1-acid glycoprotein (hAGP) which may compromise the drugs therapeutic effectiveness. Liposomal formulations of UCN-01 have been evaluated as a means of reducing the impact of binding to hAGP. However, in an initial study, UCN-01 was released rapidly from liposomes added to rat plasma containing hAGP. The purpose of this study was to develop a liposomal formulation of UCN-01 that only slowly released drug. Liposomes composed of lipids with a high phase transition temperature and having an average particle size of 120 nm and above reduced leaking of UCN-01 when the formulations were evaluated by adding to rat plasma containing hAGP. Furthermore, formulations composed of larger liposomes were also more effective in vivo; in tests in which liposomal preparations were injected together with hAGP into rats, more UCN-01 was retained in liposomes for 24h after administration of 155 nm liposomes as compared to 112 nm liposomes.


Assuntos
Antineoplásicos/química , Inibidores de Proteínas Quinases/química , Estaurosporina/análogos & derivados , Animais , Antineoplásicos/farmacocinética , Preparações de Ação Retardada , Lipossomos , Masculino , Orosomucoide/metabolismo , Tamanho da Partícula , Ligação Proteica , Inibidores de Proteínas Quinases/farmacocinética , Ratos , Ratos Sprague-Dawley , Estaurosporina/química , Estaurosporina/farmacocinética , Temperatura de Transição
5.
Biol Pharm Bull ; 30(5): 963-6, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17473443

RESUMO

The efficacy of many drugs is improved by liposomal formulations. The greatest improvements in therapeutic benefits are achieved if the drug is retained in the liposomes for several hours after administration. Many basic drugs can be concentrated efficiently into liposomes in response to a transmembrane pH gradient. However, the rate of release from liposomal formulations is drug-dependent; for example, doxorubicin is released slowly from liposomes whereas vincristine leaks out rapidly. The aim of this study was to identify the causes of the rapid release of drugs from liposomes and then to apply this knowledge to the development of more stable formulations. Our initial focus was to explore the influence of liposomal size on the rate of release of drugs. The retention of doxorubicin within liposomes was independent of the particle size as far as this experimental condition was concerned. However, the rate of release of vincristine varied in relation to the particle size of the liposomes; vincristine was retained more effectively in larger liposomes. Experimental data generated using (31)P-NMR analysis and trap volume measurements, indicated that the number of lipid bilayers in liposomes increased as the particle size was increased. Additional lipid bilayers are likely to present a more effective barrier thereby slowing the release of drugs.


Assuntos
Bicamadas Lipídicas/química , Preparações Farmacêuticas/administração & dosagem , Lipossomas Unilamelares/química , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Modelos Químicos , Tamanho da Partícula , Preparações Farmacêuticas/química , Fosfatidilcolinas/química , Vincristina/administração & dosagem , Vincristina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...