Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(31): e2308750120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37487068

RESUMO

Adipose tissue is central to regulation of energy homeostasis. Adaptive thermogenesis, which relies on mitochondrial oxidative phosphorylation (Ox-Phos), dissipates energy to counteract obesity. On the other hand, chronic inflammation in adipose tissue is linked to type 2 diabetes and obesity. Here, we show that nuclear factor I-A (NFIA), a transcriptional regulator of brown and beige adipocytes, improves glucose homeostasis by upregulation of Ox-Phos and reciprocal downregulation of inflammation. Mice with transgenic expression of NFIA in adipocytes exhibited improved glucose tolerance and limited weight gain. NFIA up-regulates Ox-Phos and brown-fat-specific genes by enhancer activation that involves facilitated genomic binding of PPARγ. In contrast, NFIA in adipocytes, but not in macrophages, down-regulates proinflammatory cytokine genes to ameliorate adipose tissue inflammation. NFIA binds to regulatory region of the Ccl2 gene, which encodes proinflammatory cytokine MCP-1 (monocyte chemoattractant protein-1), to down-regulate its transcription. CCL2 expression was negatively correlated with NFIA expression in human adipose tissue. These results reveal the beneficial effect of NFIA on glucose and body weight homeostasis and also highlight previously unappreciated role of NFIA in suppressing adipose tissue inflammation.


Assuntos
Diabetes Mellitus Tipo 2 , Fatores de Transcrição NFI , Humanos , Animais , Camundongos , Adipócitos , Homeostase , Inflamação , Tecido Adiposo Marrom , Citocinas
2.
Nat Commun ; 13(1): 4501, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042201

RESUMO

KMT2A-rearranged infant acute lymphoblastic leukemia (ALL) represents the most refractory type of childhood leukemia. To uncover the molecular heterogeneity of this disease, we perform RNA sequencing, methylation array analysis, whole exome and targeted deep sequencing on 84 infants with KMT2A-rearranged leukemia. Our multi-omics clustering followed by single-sample and single-cell inference of hematopoietic differentiation establishes five robust integrative clusters (ICs) with different master transcription factors, fusion partners and corresponding stages of B-lymphopoietic and early hemato-endothelial development: IRX-type differentiated (IC1), IRX-type undifferentiated (IC2), HOXA-type MLLT1 (IC3), HOXA-type MLLT3 (IC4), and HOXA-type AFF1 (IC5). Importantly, our deep mutational analysis reveals that the number of RAS pathway mutations predicts prognosis and that the most refractory subgroup of IC2 possesses 100% frequency and the heaviest burden of RAS pathway mutations. Our findings highlight the previously under-appreciated intra- and inter-patient heterogeneity of KMT2A-rearranged infant ALL and provide a rationale for the future development of genomics-guided risk stratification and individualized therapy.


Assuntos
Histona-Lisina N-Metiltransferase/genética , Proteína de Leucina Linfoide-Mieloide/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras , Fusão Gênica , Humanos , Lactente , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Fatores de Transcrição/genética
3.
iScience ; 25(8): 104729, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35874098

RESUMO

Thermogenic brown and beige adipocytes counteract obesity by enhancing energy dissipation via uncoupling protein-1 (Ucp1). However, the effect of genetic variation on these cells, a major source of disease susceptibility, has been less well studied. Here we examined beige adipocytes from obesity-prone C57BL/6J (B6) and obesity-resistant 129X1/SvJ (129) mouse strains and identified a cis-regulatory variant rs47238345 that is responsible for differential Ucp1 expression. The alternative T allele of rs47238345 at the Ucp1 -12kb enhancer in 129 facilitates the allele-specific binding of nuclear factor I-A (NFIA) to mediate allele-specific enhancer-promoter interaction and Ucp1 transcription. Furthermore, CRISPR-Cas9/Cpf1-mediated single nucleotide polymorphism (SNP) editing of rs47238345 resulted in increased Ucp1 expression. We also identified Lim homeobox protein 8 (Lhx8), whose expression is higher in 129 than in B6, as a trans-acting regulator of Ucp1 in mice and humans. These results demonstrate the cis- and trans-acting effects of genetic variation on Ucp1 expression that underlie phenotypic diversity.

4.
JTO Clin Res Rep ; 3(2): 100277, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35199052

RESUMO

We analyzed an EGFR-mutated lung cancer with a pathologic diagnosis of combined large cell neuroendocrine carcinoma with mixed adenocarcinoma subtypes. Targeted next-generation sequencing of each component suggested that mutations in RB1, TP53, and SMAD4 and apparent loss of heterozygosity of TP53 and SMAD4 accompanied the transition of different adenocarcinoma subtypes. Additional gene mutations including PTEN, MST1R, and PIK3CA were noted during transdifferentiation from acinar adenocarcinoma to large cell neuroendocrine carcinoma. Combined DNA and RNA analysis using Todai OncoPanel revealed that transdifferentiation to different pathologic subtypes occurred in a single tumor through the accumulation of gene mutations.

5.
J Biochem ; 171(4): 399-410, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-34908107

RESUMO

Smad proteins transduce signals downstream of transforming growth factor-ß (TGF-ß) and are one of the factors that regulate the expression of genes related to diseases affecting the skin. In the present study, we identified MAB21L4, also known as male abnormal 21 like 4 or C2orf54, as the most up-regulated targets of TGF-ß and Smad3 in differentiated human progenitor epidermal keratinocytes using chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq). We found that TGF-ß induced expression of the barrier protein involucrin (encoded by the IVL gene). Transcriptional activity of the IVL promoter induced by TGF-ß was inhibited by MAB21L4 siRNAs. Further analysis revealed that MAB21L4 siRNAs also down-regulated the expression of several target genes of TGF-ß. MAB21L4 protein was located mainly in the cytosol, where it was physically bound to Smad3 and a transcriptional corepressor c-Ski. siRNAs for MAB21L4 did not inhibit the binding of Smad3 to their target genomic regions but down-regulated the acetylation of histone H3 lys 27 (H3K27ac), an active histone mark, near the Smad3 binding regions. These findings suggest that TGF-ß-induced MAB21L4 up-regulates the gene expression induced by TGF-ß, possibly through the inhibition of c-Ski via physical interaction in the cytosol.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta , Humanos , Queratinócitos/metabolismo , Masculino , Regiões Promotoras Genéticas , RNA Interferente Pequeno/genética , Proteína Smad3/genética , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia
6.
Cancer Sci ; 113(3): 940-949, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34897916

RESUMO

The activation of RIG-I-like receptor (RLR) signaling in cancer cells is widely recognized as a critical cancer therapy method. The expected mechanism of RLR ligand-mediated cancer therapy involves the promotion of cancer cell death and strong induction of interferon (IFN)-ß that affects the tumor microenvironment. We have recently shown that activation of RLR signaling in triple-negative breast cancer cells (TNBC) attenuates transforming growth factor-ß (TGF-ß) signaling, which partly contributes to the promotion of cancer cell pyroptosis. However, the consequences of suppression of TGF-ß signaling by RLR ligands with respect to IFN-ß-mediated tumor suppression are not well characterized. This study showed that transfection of a typical RLR ligand polyI:C in cancer cells produces significant levels of IFN-ß, which inhibits the growth of the surrounding cancer cells. In addition, IFN-ß-induced cell cycle arrest in surrounding cancer cells was inhibited by the expression of constitutively active Smad3. Constitutively active Smad3 suppresses IFN-ß expression through the alleviation of IFN regulatory factor 3 binding to the canonical target genes, as suggested by ChIP sequencing analysis. Based on these findings, a new facet of the protumorigenic function of TGF-ß that suppresses IFN-ß expression is suggested when RLR-mediated cancer treatment is used in TNBC.


Assuntos
Interferon beta/metabolismo , Poli I-C/farmacologia , Fator de Crescimento Transformador beta/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Humanos , Fator Regulador 3 de Interferon/metabolismo , Poli I-C/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Proteína Smad3/genética , Proteína Smad3/metabolismo , Transfecção , Fator de Crescimento Transformador beta/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral/efeitos dos fármacos
7.
Nat Commun ; 12(1): 7045, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34857762

RESUMO

Enhancer activation is essential for cell-type specific gene expression during cellular differentiation, however, how enhancers transition from a hypoacetylated "primed" state to a hyperacetylated-active state is incompletely understood. Here, we show SET domain-containing 5 (SETD5) forms a complex with NCoR-HDAC3 co-repressor that prevents histone acetylation of enhancers for two master adipogenic regulatory genes Cebpa and Pparg early during adipogenesis. The loss of SETD5 from the complex is followed by enhancer hyperacetylation. SETD5 protein levels were transiently increased and rapidly degraded prior to enhancer activation providing a mechanism for the loss of SETD5 during the transition. We show that induction of the CDC20 co-activator of the ubiquitin ligase leads to APC/C mediated degradation of SETD5 during the transition and this operates as a molecular switch that facilitates adipogenesis.


Assuntos
Adipogenia/genética , Proteínas Estimuladoras de Ligação a CCAAT/genética , Histona Desacetilases/genética , Metiltransferases/genética , Correpressor 1 de Receptor Nuclear/genética , PPAR gama/genética , Células 3T3-L1 , Acetilação , Ciclossomo-Complexo Promotor de Anáfase/genética , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Animais , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Células HEK293 , Histona Desacetilases/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Metiltransferases/metabolismo , Camundongos , Camundongos Nus , Correpressor 1 de Receptor Nuclear/metabolismo , PPAR gama/metabolismo , Ligação Proteica , Proteólise , Células Sf9 , Transdução de Sinais
8.
Cancer Sci ; 112(7): 2855-2869, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33970549

RESUMO

Ten-eleven translocation 1 (TET1) is an essential methylcytosine dioxygenase of the DNA demethylation pathway. Despite its dysregulation being known to occur in human cancer, the role of TET1 remains poorly understood. In this study, we report that TET1 promotes cell growth in human liver cancer. The transcriptome analysis of 68 clinical liver samples revealed a subgroup of TET1-upregulated hepatocellular carcinoma (HCC), demonstrating hepatoblast-like gene expression signatures. We performed comprehensive cytosine methylation and hydroxymethylation (5-hmC) profiling and found that 5-hmC was aberrantly deposited preferentially in active enhancers. TET1 knockdown in hepatoma cell lines decreased hmC deposition with cell growth suppression. HMGA2 was highly expressed in a TET1high subgroup of HCC, associated with the hyperhydroxymethylation of its intronic region, marked as histone H3K4-monomethylated, where the H3K27-acetylated active enhancer chromatin state induced interactions with its promoter. Collectively, our findings point to a novel type of epigenetic dysregulation, methylcytosine dioxygenase TET1, which promotes cell proliferation via the ectopic enhancer of its oncogenic targets, HMGA2, in hepatoblast-like HCC.


Assuntos
Proteína HMGA2/genética , Neoplasias Hepáticas/genética , Oxigenases de Função Mista/genética , Proteínas de Neoplasias/genética , Proteínas Proto-Oncogênicas/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Cromatina/genética , Citosina/metabolismo , Metilação de DNA , Dioxigenases/metabolismo , Epigênese Genética , Expressão Gênica , Técnicas de Silenciamento de Genes , Proteína HMGA2/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Oxigenases de Função Mista/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Regulação para Cima
9.
Blood ; 137(1): 75-88, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-32730594

RESUMO

The pseudokinase Trib1 functions as a myeloid oncogene that recruits the E3 ubiquitin ligase COP1 to C/EBPα and interacts with MEK1 to enhance extracellular signal-regulated kinase (ERK) phosphorylation. A close genetic effect of Trib1 on Hoxa9 has been observed in myeloid leukemogenesis, where Trib1 overexpression significantly accelerates Hoxa9-induced leukemia onset. However, the mechanism underlying how Trib1 functionally modulates Hoxa9 transcription activity is unclear. Herein, we provide evidence that Trib1 modulates Hoxa9-associated super-enhancers. Chromatin immunoprecipitation sequencing analysis identified increased histone H3K27Ac signals at super-enhancers of the Erg, Spns2, Rgl1, and Pik3cd loci, as well as increased messenger RNA expression of these genes. Modification of super-enhancer activity was mostly achieved via the degradation of C/EBPα p42 by Trib1, with a slight contribution from the MEK/ERK pathway. Silencing of Erg abrogated the growth advantage acquired by Trib1 overexpression, indicating that Erg is a critical downstream target of the Trib1/Hoxa9 axis. Moreover, treatment of acute myeloid leukemia (AML) cells with the BRD4 inhibitor JQ1 showed growth inhibition in a Trib1/Erg-dependent manner both in vitro and in vivo. Upregulation of ERG by TRIB1 was also observed in human AML cell lines, suggesting that Trib1 is a potential therapeutic target of Hoxa9-associated AML. Taken together, our study demonstrates a novel mechanism by which Trib1 modulates chromatin and Hoxa9-driven transcription in myeloid leukemogenesis.


Assuntos
Regulação Leucêmica da Expressão Gênica/genética , Proteínas de Homeodomínio/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Leucemia Mieloide Aguda/patologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Animais , Progressão da Doença , Proteínas de Homeodomínio/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transcrição Gênica
10.
PLoS Genet ; 16(9): e1009044, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32991581

RESUMO

The transcription factor nuclear factor I-A (NFIA) is a regulator of brown adipocyte differentiation. Here we show that the C-terminal 17 amino acid residues of NFIA (which we call pro#3 domain) are required for the transcriptional activity of NFIA. Full-length NFIA-but not deletion mutant lacking pro#3 domain-rescued impaired expression of PPARγ, the master transcriptional regulator of adipogenesis and impaired adipocyte differentiation in NFIA-knockout cells. Mechanistically, the ability of NFIA to penetrate chromatin and bind to the crucial Pparg enhancer is mediated through pro#3 domain. However, the deletion mutant still binds to Myod1 enhancer to repress expression of MyoD, the master transcriptional regulator of myogenesis as well as proximally transcribed non-coding RNA called DRReRNA, via competition with KLF5 in terms of enhancer binding, leading to suppression of myogenic gene program. Therefore, the negative effect of NFIA on the myogenic gene program is, at least partly, independent of the positive effect on PPARγ expression and its downstream adipogenic gene program. These results uncover multiple ways of action of NFIA to ensure optimal regulation of brown and beige adipocyte differentiation.


Assuntos
Adipócitos Bege/citologia , Adipócitos Marrons/citologia , Adipogenia/fisiologia , Desenvolvimento Muscular/fisiologia , Fatores de Transcrição NFI/metabolismo , Adipócitos Bege/fisiologia , Adipócitos Marrons/fisiologia , Adipogenia/genética , Animais , Diferenciação Celular/genética , Cromatina/genética , Cromatina/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Desenvolvimento Muscular/genética , Proteína MyoD/genética , Miogenina/genética , Fatores de Transcrição NFI/genética , PPAR gama/genética , PPAR gama/metabolismo , Prolina , Domínios Proteicos
11.
EMBO J ; 39(7): e103949, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32125007

RESUMO

Histone H3 lysine-9 di-methylation (H3K9me2) and lysine-27 tri-methylation (H3K27me3) are linked to repression of gene expression, but the functions of repressive histone methylation dynamics during inflammatory responses remain enigmatic. Here, we report that lysine demethylases 7A (KDM7A) and 6A (UTX) play crucial roles in tumor necrosis factor (TNF)-α signaling in endothelial cells (ECs), where they are regulated by a novel TNF-α-responsive microRNA, miR-3679-5p. TNF-α rapidly induces co-occupancy of KDM7A and UTX at nuclear factor kappa-B (NF-κB)-associated elements in human ECs. KDM7A and UTX demethylate H3K9me2 and H3K27me3, respectively, and are both required for activation of NF-κB-dependent inflammatory genes. Chromosome conformation capture-based methods furthermore uncover increased interactions between TNF-α-induced super enhancers at NF-κB-relevant loci, coinciding with KDM7A and UTX recruitments. Simultaneous pharmacological inhibition of KDM7A and UTX significantly reduces leukocyte adhesion in mice, establishing the biological and potential translational relevance of this mechanism. Collectively, these findings suggest that rapid erasure of repressive histone marks by KDM7A and UTX is essential for NF-κB-dependent regulation of genes that control inflammatory responses of ECs.


Assuntos
Células Endoteliais/imunologia , Histona Desmetilases/metabolismo , Histonas/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , MicroRNAs/genética , Animais , Adesão Celular , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Histonas/química , Células Endoteliais da Veia Umbilical Humana , Humanos , Lisina/metabolismo , Masculino , Metilação , Camundongos , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
12.
Cancer Sci ; 111(2): 451-466, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31834974

RESUMO

The tumor suppressor gene p53 encodes a transcriptional activator that has two transactivation domains (TAD) located in its amino terminus. These two TAD can transactivate genes independently, and at least one TAD is required for p53 transactivation function. The 1st TAD (a.a. 1-40) is essential for the induction of numerous classical p53 target genes, while the second TAD (a.a. 41-61) suffices for tumor suppression, although its precise molecular function remains unclear. In this study, we comprehensively identified the sites to which p53 lacking the 1st TAD (Δ1stTAD-p53) binds, as well as its potential target genes. We found that the binding sequences for Δ1stTAD-p53 are divergent and include not only the canonical p53 consensus binding sequences but also sequences similar to those recognized by a number of other known transcription factors. We identified and analyzed the functions of three Δ1stTAD-p53 target genes, PTP4A1, PLK2 and RPS27L. All three genes were induced by both full-length p53 and Δ1stTAD-p53, and were dependent on the transactivation activity of the 2nd TAD. We also found that two of these, PTP4A1 and PLK2, are endoplasmic reticulum (ER) stress-inducible genes. We found that upon ER stress, PTP4A1 suppresses apoptosis while PLK2 induces apoptosis. These results reveal a novel Δ1stTAD-p53 downstream pathway that is dependent on the transcription activation activity of the 2nd TAD.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Membrana/genética , Mutação , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Fosfatases/genética , Proteínas Ribossômicas/genética , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo , Apoptose , Sítios de Ligação , Estresse do Retículo Endoplasmático , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Ligação Proteica , Domínios Proteicos , Ativação Transcricional , Proteína Supressora de Tumor p53/genética
13.
Mol Oncol ; 14(2): 277-293, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31782890

RESUMO

Thyroid transcription factor-1 (TTF-1, encoded by the NKX2-1 gene) is highly expressed in small-cell lung carcinoma (SCLC) and lung adenocarcinoma (LADC), but how its functional roles differ between SCLC and LADC remains to be elucidated. Here, we compared the genome-wide distributions of TTF-1 binding regions and the transcriptional programs regulated by TTF-1 between NCI-H209 (H209), a human SCLC cell line, and NCI-H441 (H441), a human LADC cell line, using chromatin immunoprecipitation-sequencing (ChIP-seq) and RNA-sequencing (RNA-seq). TTF-1 binding regions in H209 and H441 cells differed by 75.0% and E-box motifs were highly enriched exclusively in the TTF-1 binding regions of H209 cells. Transcriptome profiling revealed that TTF-1 is involved in neuroendocrine differentiation in H209 cells. We report that TTF-1 and achaete-scute homolog 1 (ASCL1, also known as ASH1, an E-box binding basic helix-loop-helix transcription factor, and a lineage-survival oncogene of SCLC) are coexpressed and bound to adjacent sites on target genes expressed in SCLC, and cooperatively regulate transcription. Furthermore, TTF-1 regulated expression of the Bcl-2 gene family and showed antiapoptotic function in SCLC. Our findings suggest that TTF-1 promotes SCLC growth and contributes to neuroendocrine and antiapoptotic gene expression by partly coordinating with ASCL1.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Proliferação de Células/genética , Neoplasias Pulmonares/genética , Carcinoma de Pequenas Células do Pulmão/genética , Fator Nuclear 1 de Tireoide/metabolismo , Apoptose/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Sequenciamento de Cromatina por Imunoprecipitação , Regulação Neoplásica da Expressão Gênica/genética , Ontologia Genética , Estudo de Associação Genômica Ampla , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Motivos de Nucleotídeos , Prognóstico , Ligação Proteica , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Interferência de RNA , RNA-Seq , Carcinoma de Pequenas Células do Pulmão/metabolismo , Carcinoma de Pequenas Células do Pulmão/mortalidade , Análise Serial de Tecidos
14.
Epigenetics Chromatin ; 12(1): 77, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31856914

RESUMO

BACKGROUND: Endothelial cells (ECs) make up the innermost layer throughout the entire vasculature. Their phenotypes and physiological functions are initially regulated by developmental signals and extracellular stimuli. The underlying molecular mechanisms responsible for the diverse phenotypes of ECs from different organs are not well understood. RESULTS: To characterize the transcriptomic and epigenomic landscape in the vascular system, we cataloged gene expression and active histone marks in nine types of human ECs (generating 148 genome-wide datasets) and carried out a comprehensive analysis with chromatin interaction data. We developed a robust procedure for comparative epigenome analysis that circumvents variations at the level of the individual and technical noise derived from sample preparation under various conditions. Through this approach, we identified 3765 EC-specific enhancers, some of which were associated with disease-associated genetic variations. We also identified various candidate marker genes for each EC type. We found that the nine EC types can be divided into two subgroups, corresponding to those with upper-body origins and lower-body origins, based on their epigenomic landscape. Epigenomic variations were highly correlated with gene expression patterns, but also provided unique information. Most of the deferentially expressed genes and enhancers were cooperatively enriched in more than one EC type, suggesting that the distinct combinations of multiple genes play key roles in the diverse phenotypes across EC types. Notably, many homeobox genes were differentially expressed across EC types, and their expression was correlated with the relative position of each organ in the body. This reflects the developmental origins of ECs and their roles in angiogenesis, vasculogenesis and wound healing. CONCLUSIONS: This comprehensive analysis of epigenome characterization of EC types reveals diverse transcriptional regulation across human vascular systems. These datasets provide a valuable resource for understanding the vascular system and associated diseases.


Assuntos
Células Endoteliais/metabolismo , Epigenoma , Regulação da Expressão Gênica , Cromatina/metabolismo , Bases de Dados Genéticas , Células Endoteliais/citologia , Elementos Facilitadores Genéticos , Estudo de Associação Genômica Ampla , Código das Histonas , Histonas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Análise de Componente Principal , Regiões Promotoras Genéticas
15.
J Biol Chem ; 294(42): 15466-15479, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31481467

RESUMO

Smad proteins are transcriptional regulators activated by TGF-ß. They are known to bind to two distinct Smad-responsive motifs, namely the Smad-binding element (SBE) (5'-GTCTAGAC-3') and CAGA motifs (5'-AGCCAGACA-3' or 5'-TGTCTGGCT-3'). However, the mechanisms by which these motifs promote Smad activity are not fully elucidated. In this study, we performed DNA CASTing, binding assays, ChIP sequencing, and quantitative RT-PCR to dissect the details of Smad binding and function of the SBE and CAGA motifs. We observed a preference for Smad3 to bind CAGA motifs and Smad4 to bind SBE, and that either one SBE or a triple-CAGA motif forms a cis-acting functional half-unit for Smad-dependent transcription activation; combining two half-units allows efficient activation. Unexpectedly, the extent of Smad binding did not directly correlate with the abilities of Smad-binding sequences to induce gene expression. We found that Smad proteins are more tolerant of single bp mutations in the context of the CAGA motifs, with any mutation in the SBE disrupting function. CAGA and CAGA-like motifs but not SBE are widely distributed among stimulus-dependent Smad2/3-binding sites in normal murine mammary gland epithelial cells, and the number of CAGA and CAGA-like motifs correlates with fold-induction of target gene expression by TGF-ß. These data, demonstrating Smad responsiveness can be tuned by both sequence and number of repeats, provide a compelling explanation for why CAGA motifs are predominantly used for Smad-dependent transcription activation in vivo.


Assuntos
Proteína Smad3/química , Proteína Smad3/metabolismo , Proteína Smad4/química , Proteína Smad4/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Motivos de Aminoácidos , Sequência de Bases , Sítios de Ligação , Humanos , Ligação Proteica , Elementos de Resposta , Proteína Smad2/química , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína Smad3/genética , Proteína Smad4/genética , Ativação Transcricional
16.
Cancer Sci ; 109(11): 3532-3542, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30207029

RESUMO

The PHLDA family (pleckstrin homology-like domain family) of genes consists of 3 members: PHLDA1, 2, and 3. Both PHLDA3 and PHLDA2 are phosphatidylinositol (PIP) binding proteins and function as repressors of Akt. They have tumor suppressive functions, mainly through Akt inhibition. Several reports suggest that PHLDA1 also has a tumor suppressive function; however, the precise molecular functions of PHLDA1 remain to be elucidated. Through a comprehensive screen for p53 target genes, we identified PHLDA1 as a novel p53 target, and we show that PHLDA1 has the ability to repress Akt in a manner similar to that of PHLDA3 and PHLDA2. PHLDA1 has a so-called split PH domain in which the PH domain is divided into an N-terminal (ß sheets 1-3) and a C-terminal (ß sheets 4-7 and an α-helix) portions. We show that the PH domain of PHLDA1 is responsible for its localization to the plasma membrane and binding to phosphatidylinositol. We also show that the function of the PH domain is essential for Akt repression. In addition, PHLDA1 expression analysis suggests that PHLDA1 has a tumor suppressive function in breast and ovarian cancers.


Assuntos
Neoplasias da Mama/genética , Neoplasias Ovarianas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Processamento Alternativo , Animais , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Transplante de Neoplasias , Fosfatidilinositóis/metabolismo , Ligação Proteica , Fatores de Transcrição/química
17.
Cancer Sci ; 109(9): 2907-2918, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29945296

RESUMO

EWS-FLI1 constitutes an oncogenic transcription factor that plays key roles in Ewing sarcoma development and maintenance. We have recently succeeded in generating an ex vivo mouse model for Ewing sarcoma by introducing EWS-FLI1 into embryonic osteochondrogenic progenitors. The model well recapitulates the biological characteristics, small round cell morphology, and gene expression profiles of human Ewing sarcoma. Here, we clarified the global DNA binding properties of EWS-FLI1 in mouse Ewing sarcoma. GGAA microsatellites were found to serve as binding sites of EWS-FLI1 albeit with less frequency than that in human Ewing sarcoma; moreover, genomic distribution was not conserved between human and mouse. Nevertheless, EWS-FLI1 binding sites within GGAA microsatellites were frequently associated with the histone H3K27Ac enhancer mark, suggesting that EWS-FLI1 could affect global gene expression by binding its target sites. In particular, the Fox transcription factor binding motif was frequently observed within EWS-FLI1 peaks and Foxq1 was identified as the cooperative partner that interacts with the EWS portion of EWS-FLI1. Trib1 and Nrg1 were demonstrated as target genes that are co-regulated by EWS-FLI1 and Foxq1, and are important for cell proliferation and survival of Ewing sarcoma. Collectively, our findings present novel aspects of EWS-FLI1 function as well as the importance of GGAA microsatellites.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Repetições de Microssatélites/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteína Proto-Oncogênica c-fli-1/metabolismo , Proteína EWS de Ligação a RNA/metabolismo , Sarcoma de Ewing/patologia , Animais , Apoptose/genética , Sítios de Ligação/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Condrogênese/genética , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Células-Tronco Embrionárias/citologia , Transição Epitelial-Mesenquimal/genética , Fatores de Transcrição Forkhead/genética , Histonas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Neuregulina-1/genética , Proteínas de Fusão Oncogênica/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteína Proto-Oncogênica c-fli-1/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Proteína EWS de Ligação a RNA/genética , Sarcoma de Ewing/genética
18.
Nat Cell Biol ; 19(9): 1081-1092, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28812581

RESUMO

Brown fat dissipates energy as heat and protects against obesity. Here, we identified nuclear factor I-A (NFIA) as a transcriptional regulator of brown fat by a genome-wide open chromatin analysis of murine brown and white fat followed by motif analysis of brown-fat-specific open chromatin regions. NFIA and the master transcriptional regulator of adipogenesis, PPARγ, co-localize at the brown-fat-specific enhancers. Moreover, the binding of NFIA precedes and facilitates the binding of PPARγ, leading to increased chromatin accessibility and active transcription. Introduction of NFIA into myoblasts results in brown adipocyte differentiation. Conversely, the brown fat of NFIA-knockout mice displays impaired expression of the brown-fat-specific genes and reciprocal elevation of muscle genes. Finally, expression of NFIA and the brown-fat-specific genes is positively correlated in human brown fat. These results indicate that NFIA activates the cell-type-specific enhancers and facilitates the binding of PPARγ to control the brown fat gene program.


Assuntos
Adipócitos Marrons/metabolismo , Adipogenia/genética , Tecido Adiposo Marrom/metabolismo , Fatores de Transcrição NFI/metabolismo , PPAR gama/metabolismo , Transcrição Gênica , Células 3T3-L1 , Tecido Adiposo Marrom/citologia , Animais , Sítios de Ligação , Cromatina/genética , Cromatina/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Desenvolvimento Muscular , Mioblastos/metabolismo , Fatores de Transcrição NFI/deficiência , Fatores de Transcrição NFI/genética , PPAR gama/genética , Fenótipo , Ligação Proteica , Interferência de RNA , Transdução de Sinais , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transfecção
19.
Sci Rep ; 7(1): 1166, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28446749

RESUMO

Epithelial-mesenchymal transition (EMT) is induced by transforming growth factor (TGF)-ß and facilitates tumor progression. We here performed global mapping of accessible chromatin in the mouse mammary gland epithelial EpH4 cell line and its Ras-transformed derivative (EpRas) using formaldehyde-assisted isolation of regulatory element (FAIRE)-sequencing. TGF-ß and Ras altered chromatin accessibility either cooperatively or independently, and AP1, ETS, and RUNX binding motifs were enriched in the accessible chromatin regions of EpH4 and EpRas cells. Etv4, an ETS family oncogenic transcription factor, was strongly expressed and bound to more than one-third of the accessible chromatin regions in EpRas cells treated with TGF-ß. While knockdown of Etv4 and another ETS family member Etv5 showed limited effects on the decrease in the E-cadherin abundance and stress fiber formation by TGF-ß, gene ontology analysis showed that genes encoding extracellular proteins were most strongly down-regulated by Etv4 and Etv5 siRNAs. Accordingly, TGF-ß-induced expression of Mmp13 and cell invasiveness were suppressed by Etv4 and Etv5 siRNAs, which were accompanied by the reduced chromatin accessibility at an enhancer region of Mmp13 gene. These findings suggest a mechanism of transcriptional regulation during Ras- and TGF-ß-induced EMT that involves alterations of accessible chromatin, which are partly regulated by Etv4 and Etv5.


Assuntos
Transformação Celular Neoplásica , Cromatina/metabolismo , Células Epiteliais/fisiologia , Transição Epitelial-Mesenquimal , Glândulas Mamárias Animais/citologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , DNA/metabolismo , Regulação da Expressão Gênica , Camundongos , Ligação Proteica
20.
PLoS One ; 11(6): e0157992, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27336669

RESUMO

TGF-ß is a multifunctional cytokine that is involved in cell proliferation, differentiation and function. We previously reported an essential role of the TGF-ß -Smad2/3 pathways in RANKL-induced osteoclastogenesis. Using chromatin immunoprecipitation followed by sequencing, we comprehensively identified Smad2/3 target genes in bone marrow macrophages. These genes were enriched in the gene population upregulated by TGF-ß and downregulated by RANKL. Recent studies have revealed that histone modifications, such as trimethylation of histone H3 lysine 4 (H3K4me3) and lysine 27 (H3K27me3), critically regulate key developmental steps. We identified Nedd9 as a Smad2/3 target gene whose histone modification pattern was converted from H3K4me3(+)/H3K4me27(+) to H3K4me3(+)/H3K4me27(-) by TGF-ß. Nedd9 expression was increased by TGF-ß and suppressed by RANKL. Overexpression of Nedd9 partially rescued an inhibitory effect of a TGF-ß inhibitor, while gene silencing of Nedd9 suppressed RANKL-induced osteoclastogenesis. RANKL-induced osteoclastogenesis were reduced and stimulatory effects of TGF-ß on RANKL-induced osteoclastogenesis were partially abrogated in cells from Nedd9-deficient mice although knockout mice did not show abnormal skeletal phenotypes. These results suggest that Nedd9 is a Smad2/3 target gene implicated in RANKL-induced osteoclastogenesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Reabsorção Óssea/genética , Regulação da Expressão Gênica , Osteoclastos/metabolismo , Ligante RANK/metabolismo , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Reabsorção Óssea/tratamento farmacológico , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Epigênese Genética , Perfilação da Expressão Gênica , Histonas/metabolismo , Masculino , Camundongos , Camundongos Knockout , Osteoclastos/efeitos dos fármacos , Ligação Proteica , Ligante RANK/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...