Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 890: 164475, 2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37257625

RESUMO

Bacterial cytochrome P450 monooxygenase P450BM3 is a promising enzyme to provide novel substrate specificity and enhanced enzymatic activity. The wild type (WT) has been shown to metabolize the widely distributed polychlorinated biphenyl (PCB) 2,3',4,4',5-pentachlorobiphenyl (CB118) to hydroxylated metabolites. However, this reaction requires the coexistence of perfluoroalkyl carboxylic acids (PFCAs). To locate P450BM3 mutants metabolizing CB118 without PFCAs, mutations were selected from amino acids comprising the substrate-binding cavity and the substrate entrance. The mutant A264G showed enhanced hydroxylation activities compared to the WT for the production of five hydroxylated metabolites. Perfluorooctanoic acid addition provided the highest activity, as found in the WT. The docking model of A264G and CB118 indicated that the enlargement of the space above the heme brought CB118 close to the heme, resulting in high activity. In contrast, the mutants L188Q, QG, LVQ, and GVQ, which contain the L188Q mutation, showed higher activity than WT even without PFCAs. Docking models revealed that the closed form found in substrate binding was induced by the L188Q mutation in the substrate non-binding state of the mutants. These mutants are promising for bioremediation of PCBs using enhanced metabolizing activities.


Assuntos
Bacillus megaterium , Bifenilos Policlorados , Bacillus megaterium/genética , Bacillus megaterium/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Bifenilos Policlorados/metabolismo , Hidroxilação , Heme/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
2.
Chemosphere ; 308(Pt 2): 136349, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36084836

RESUMO

Chiral polychlorinated biphenyls (PCBs) have atropisomers that have different axial chiralities and exist as racemic mixtures. However, biochemical processes often result in the unequal accumulation of these atropisomers in organisms. This phenomenon leads to enantiospecific toxicity enhancement or reduction because either of the atropisomers mainly affects toxicity expression. Enantioselective accumulation is caused by cytochrome P450 (CYP, P450) monooxygenases, especially the CYP2B subfamilies. Therefore, this study investigates the metabolism of a chiral PCB in vitro. Both atropisomers isolated from racemic 2,2',3,4,4',5',6-heptachlorobiphenyl (CB183) were metabolized by human CYP2B6, but not rat CYP2B1. This may be due to the difference in the size of the substrate-binding cavities of CYP2B6 and CYP2B1. The stable accommodation of (-)-CB183 in the cavity without any steric hindrance explained the preferential metabolism of (-)-CB183 compared to (+)-CB183. Two hydroxylated metabolites, 3'-OH-CB183 and 5-OH-CB183, were identified. The docking study showed that the 3'-position of the trichlorophenyl ring closely approaches the heme of CYP2B6. To our knowledge, this is the first study to elucidate the structural basis of chiral PCB metabolism by P450 isozymes. These results will help promote the precise toxicity evaluation of chiral PCBs and provide an explanation of the structural basis of chiral PCB metabolism.


Assuntos
Bifenilos Policlorados , Animais , Citocromo P-450 CYP2B1/metabolismo , Citocromo P-450 CYP2B6/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Heme , Humanos , Hidroxilação , Isoenzimas/metabolismo , Bifenilos Policlorados/química , Ratos , Estereoisomerismo
3.
Environ Sci Technol ; 56(14): 10204-10215, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35801261

RESUMO

Although polychlorinated biphenyls (PCBs) were commercially banned half a century ago, contamination of the environment and organisms by PCBs is still observed. PCBs show high persistence and bioaccumulation, resulting in toxicity. Among PCBs, chiral PCBs with more than three chlorine atoms at the ortho-position exhibit developmental and neurodevelopmental toxicity. Because toxicity is dependent on the atropisomer, atropisomer-specific metabolism is vital in determining toxicity. However, structural information on enantioselective metabolism remains elusive. Cytochrome P450 (CYP, P450) monooxygenases, particularly human CYP2B6 and rat CYP2B1, metabolize separated atropisomers of 2,2',3,6-tetrachlorobiphenyl (CB45) and 2,2',3,4',6-pentachlorobiphenyl (CB91) to dechlorinated and hydroxylated metabolites. Docking studies using human CYP2B6 predict 4'-hydroxy (OH)-CB45 from (aR)-CB45 as a major metabolite of CB45. Di-OH- and dechlorinated OH-metabolites from human CYP2B6 and rat CYP2B1 are also detected. Several hydroxylated metabolites are derived from CB91 by both P450s; 5-OH-CB91 is predicted as a major metabolite. CB91 dechlorination is also detected by identifying 3-OH-CB51. A stable conformation of PCBs in the substrate-binding cavity and close distance to P450 heme are responsible for high metabolizing activities. As hydroxylation and dechlorination change PCB toxicity, this approach helps understand the possible toxicity of chiral PCBs in mammals.


Assuntos
Bifenilos Policlorados , Animais , Citocromo P-450 CYP2B1/metabolismo , Citocromo P-450 CYP2B6/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Hidroxilação , Mamíferos/metabolismo , Bifenilos Policlorados/metabolismo , Ratos , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...