Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37836186

RESUMO

In this review, the significance of ratoon rice was introduced, and the research status and development trends of ratoon rice were also summarized. It is pointed out that mechanically harvested ratoon rice is the developing direction of future ratoon rice. On this basis, we analyzed the relationship between the yield of ratoon rice and many factors, such as variety characteristics, sowing date, water control, fertilizer, and many others. It is important to construct a comprehensive and practical evaluation system for rice regeneration that can provide a basis for high-yield cultivation of machine-harvested ratoon rice. At the same time, it is suggested that combining high-yield cultivation with the green ecological efficiency of rice can achieve better production and improve the quality of rice. Finally, some problems with ratoon rice development were put forward. An in-depth study on the rhizosphere biology and regulation techniques of ratoon rice and the effective ecological compensation mechanism increased the capacity and quality of ratoon rice. Further, the functioning of such research can enhance the planting area for ratoon rice and improve food security.

2.
Front Plant Sci ; 14: 1136347, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36866379

RESUMO

Climate warming affects rice growth at different phenological stages, thereby increasing rice chalkiness and protein content and reducing eating and cooking quality (ECQ). The structural and physicochemical properties of rice starch played important roles in determining rice quality. However, differences in their response to high temperature during the reproductive stage have been rarely studied. In the present study, they were evaluated and compared between two contrasting natural temperature field conditions, namely, high seasonal temperature (HST) and low seasonal temperature (LST), during the reproductive stage of rice in 2017 and 2018. Compared with LST, HST significantly deteriorated rice quality, including increased grain chalkiness, setback, consistence, and pasting temperature and reduced taste values. HST considerably reduced the total starch and increased the protein content. Likewise, HST significantly reduced the short amylopectin chains [degree of polymerization (DP) <12] and increased the long amylopectin chains (DP > 12) and relative crystallinity. The starch structure, total starch content, and protein content explained 91.4%, 90.4%, and 89.2% of the total variations in pasting properties, taste value, and grain chalkiness degree, respectively. In conclusion, we suggested that rice quality variations were closely associated with the changes in chemical composition content (total starch and protein content) and starch structure in response to HST. These results indicated that we should improve the resistance of rice to high temperature during the reproductive stage to improve the fine structure of rice starch in further breeding and practice.

3.
Plants (Basel) ; 11(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36297721

RESUMO

Rice (Oryza sativa L.) is cultivated in a wide range of climatic conditions, thereby inducing great variations in the rice growth, yield and quality. However, the comprehensive effects of temperature and solar radiation under different ecological regions on the rice growth, yield and quality are not well understood, especially in a middle rice cropping system. The rice growth, yield- and quality-related traits were investigated under different ecological regions. Among different areas, the days before the heading stage and after the heading stage of six cultivars ranged from 80 to 120 and from 30 to 50. The gaps of the grain yield, head rice rate, chalky grain rate and chalkiness level were about 1.2-52.4%, 1.0-3.0%, 2.7-12.7% and 0.3-4.5%, respectively. This study demonstrated that in these regions, temperature is a limiting factor compared with radiation. Moreover, the rice growth, yield and quality were closely associated with daily air (DT), maximum (MaT), minimum (MiT) and effective accumulated temperatures (EAT). An excellent rice growth, a high grain yield and an excellent quality could be achieved if the EAT was higher than 1592 °C·d and the MiT was lower than 23.1 °C before the heading stage, and if the DT, MiT and MaT were lower than 25.7 °C, 22.0 °C and 30 °C after the heading stage, respectively. These findings served as an important reference for optimizing cultivar selection for a specific area and determining suitable areas for a certain variety.

4.
Front Plant Sci ; 13: 911181, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35865292

RESUMO

Global warming greatly affects the development of rice at different growth stages, thereby deteriorating rice quality. However, the effect of high natural field temperature during reproductive stages on rice quality is unclear. Thus, grain filling dynamics, source-sink characteristics and quality-related traits were compared between two contrasting natural field temperature conditions namely normal (low temperature) (LRT) and hot (high temperature) growth season (HRT) during reproductive stage. Compared with LRT, HRT significantly increased chalky grain rate (about 1.6-3.1%), chalkiness level (about 4.7-22.4%), protein content (about 0.93-1.07%), pasting temperature, setback, and consistence, and decreased total starch content (about 4.6-6.2%). Moreover, HRT significantly reduced the leaf area index (LAI, about 0.54-1.11 m2 m-2), specific leaf weight (SLW, about 1.27-1.44 mg cm-2) and source-sink ratio (leaf-sink ratio and/or stem-sink ratio), shortened the active grain filling period by 3.1-3.2 days, and reduced the rations of dry matter translocation to grain (RDMs). In conclusion, we suggested that significant reduction in assimilate translocation after flowering, resulting in the reduced active grain-filling duration and the poor rice quality (high chalkiness and the poor eating and cooking quality), modulated by source-sink characteristics in response to high natural field temperature during reproductive stage. These results enriched the study of high temperature-stressed rice and served as an important reference for selecting high-quality, heat-tolerant varieties and protecting rice quality under high-temperature conditions.

5.
Front Plant Sci ; 13: 1081807, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684799

RESUMO

High temperatures caused by climate warming severely affect the grain yield and quality of rice. In this study, the rice cultivars Longliangyou Huazhan (LLYHZ) and Quanliangyou 2118 (QLY2118) were selected as the experimental materials for investigation of an optimal cultivation system under high-temperature treatment. In addition, the heat-resistant cultivar Huanghuazhan (HHZ) and heat-sensitive cultivar Huiliangyou 858 (HLY858) were chosen as the experimental materials to study the effects of exogenous plant growth regulators on heat stress responses under high-temperature treatment. The results showed that mechanical transplanting of carpet seedlings and delayed sowing effectively increased the leaf area index and reduced the canopy temperature of LLYHZ and QLY2118. Furthermore, carpet seedling mechanical transplantation and delayed sowing improved grain yield and quality. Spray application of five plant growth regulators revealed that brassinolide and salicylic acid had the strongest effects on significantly improving antioxidant enzyme activities in the panicle, which would reduce the damage caused by the accumulation of reactive oxygen species and enhance plant tolerance of high-temperature stress. In addition, brassinolide and salicylic acid enhanced the percentage of anther dehiscence and percentage seed set. In this study, a set of simplified eco-friendly cultivation techniques for single-season indica rice adaptation to high-temperature stress was established. These results will be of great importance in alleviating the effects of high-temperature stress on rice production.

6.
J Sci Food Agric ; 100(2): 595-606, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31591721

RESUMO

BACKGROUND: Climate change has posed great challenges to rice production. Temperature and solar radiation show significant variations in central China. This study aims to analyze the responses of different rice genotypes to the variations of temperature and solar radiation in central China, and to find the way of identifying the optimal sowing date to improve and stabilize rice production. For this end, four rice genotypes (two Indica and two Japonica cultivars) were cultivated at two locations under irrigation conditions in 2 years with six sowing dates. RESULTS: We investigated variations of rice grain yield, resource use efficiency, average daily temperature and solar radiation during different phenological stages. Rice grain yield could increase by about 2-17% in central China. Compared with solar radiation, temperature was a more important factor affecting rice grain yield in central China. The grain yield showed great correlation with the means temperature during different phenological stages, especially during the first 20 days after heading (GT20). Besides our results demonstrated that the grain yield displayed slender variations when the GT20 was within 24.9-26.4 °C. However, GT20 was higher than 26.4 °C in most cases, which became more frequent due to climate changes. Analysis of climate change during the last 25 years revealed that the frequency of GT20 within 24.9-26.4 °C was increased by the delay of sowing date. CONCLUSION: We propose that delaying sowing date to achieve the optimal GT20 (24.9 °C-26.4 °C) can be an effective strategy to stabilize and improve rice grain yield and resource use efficiency in central China. © 2019 Society of Chemical Industry.


Assuntos
Produção Agrícola/métodos , Oryza/crescimento & desenvolvimento , Irrigação Agrícola , China , Mudança Climática , Genótipo , Oryza/genética , Oryza/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Temperatura , Água/análise , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...