Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
J Colloid Interface Sci ; 663: 810-824, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38447396

RESUMO

Nanozymes, as nanomaterials with natural enzyme activities, have been widely applied to deliver various therapeutic agents to synergistically combat the progression of malignant tumors. However, currently common inorganic nanozyme-based drug delivery systems still face challenges such as suboptimal biosafety, inadequate stability, and inferior tumor selectivity. Herein, a super-stable amino acid-based metallo-supramolecular nanoassembly (FPIC NPs) with peroxidase (POD)- and glutathione oxidase (GSHOx)-like activities was fabricated via Pt4+-driven coordination co-assembly of l-cysteine derivatives, the chemotherapeutic drug curcumin (Cur), and the photosensitizer indocyanine green (ICG). The superior POD- and GSHOx-like activities could not only catalyze the decomposition of endogenous hydrogen peroxide into massive hydroxyl radicals, but also deplete the overproduced glutathione (GSH) in cancer cells to weaken intracellular antioxidant defenses. Meanwhile, FPIC NPs would undergo degradation in response to GSH to specifically release Cur, causing efficient mitochondrial damage. In addition, FPIC NPs intrinsically enable fluorescence/photoacoustic imaging to visualize tumor accumulation of encapsulated ICG in real time, thereby determining an appropriate treatment time point for tumoricidal photothermal (PTT)/photodynamic therapy (PDT). In vitro and in vivo findings demonstrated the quadruple orchestration of catalytic therapy, chemotherapeutics, PTT, and PDT offers conspicuous antineoplastic effects with minimal side reactions. This work may provide novel ideas for designing supramolecular nanoassemblies with multiple enzymatic activities and therapeutic functions, allowing for wider applications of nanozymes and nanoassemblies in biomedicine.


Assuntos
Curcumina , Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Aminoácidos , Terapia Combinada , Verde de Indocianina/farmacologia , Neoplasias/tratamento farmacológico , Corantes , Oxirredução , Linhagem Celular Tumoral
2.
Osteoporos Int ; 35(1): 129-141, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37728768

RESUMO

While FRAX with BMD could be more precise in estimating the fracture risk, DL-based models were validated to slightly reduce the number of under- and over-treated patients when no BMD measurements were available. The validated models could be used to screen for patients at a high risk of fracture and osteoporosis. PURPOSE: Fracture risk assessment tool (FRAX) is useful in classifying the fracture risk level, and precise prediction can be achieved by estimating both clinical risk factors and bone mineral density (BMD) using dual X-ray absorptiometry (DXA). However, DXA is not frequently feasible because of its cost and accessibility. This study aimed to establish the reliability of deep learning (DL)-based alternative tools for screening patients at a high risk of fracture and osteoporosis. METHODS: Participants were enrolled from the National Bone Health Screening Project of Taiwan in this cross-sectional study. First, DL-based models were built to predict the lowest T-score value in either the lumbar spine, total hip, or femoral neck and their respective BMD values. The Bland-Altman analysis was used to compare the agreement between the models and DXA. Second, the predictive model to classify patients with a high fracture risk was built according to the estimated BMD from the first step and the FRAX score without BMD. The performance of the model was compared with the classification based on FRAX with BMD. RESULTS: Approximately 10,827 women (mean age, 65.4 ± 9.4 years) were enrolled. In the prediction of the lumbar spine BMD, total hip BMD, femoral neck BMD, and lowest T-score, the root-mean-square error (RMSE) was 0.099, 0.089, 0.076, and 0.68, respectively. The Bland-Altman analysis revealed a nonsignificant difference between the predictive models and DXA. The FRAX score with femoral neck BMD for major osteoporotic fracture risk was 9.7% ± 6.7%, whereas the risk for hip fracture was 3.3% ± 4.6%. Comparison between the classification of FRAX with and without BMD revealed the accuracy rate, positive predictive value (PPV), and negative predictive value (NPV) of 78.8%, 64.6%, and 89.9%, respectively. The area under the receiver operating characteristic curve (AUROC), accuracy rate, PPV, and NPV of the classification model were 0.913 (95% confidence interval: 0.904-0.922), 83.5%, 71.2%, and 92.2%, respectively. CONCLUSION: While FRAX with BMD could be more precise in estimating the fracture risk, DL-based models were validated to slightly reduce the number of under- and over-treated patients when no BMD measurements were available. The validated models could be used to screen for patients at a high risk of fracture and osteoporosis.


Assuntos
Aprendizado Profundo , Osteoporose , Fraturas por Osteoporose , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Densidade Óssea , Estudos Transversais , Reprodutibilidade dos Testes , Medição de Risco , Osteoporose/diagnóstico por imagem , Osteoporose/complicações , Fraturas por Osteoporose/prevenção & controle , Absorciometria de Fóton , Fatores de Risco , Colo do Fêmur , Vértebras Lombares/diagnóstico por imagem
3.
Technol Health Care ; 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38043028

RESUMO

BACKGROUND: Tongue diagnosis is a crucial traditional Chinese medicine (TCM) inspection method for TCM syndrome differentiation and treatment. OBJECTIVE: The primary research focus was on tongue image characteristic parameters of patients with non-small cell lung cancer (NSCLC). Analysis of the tongue image parameters of various pathological stages of NSCLC provides technical support for establishing an integrated Chinese and Western auxiliary diagnosis and efficacy evaluation medicine system for lung cancer that integrates tongue image features. METHODS: Tongue image characteristics of 309 patients with NSCLC and 206 controls were collected and analyzed clinically. The T-test or rank sum test and logistic regression analysis were applied to analyze the characteristics of tongue image indicators of different pathological stages of NSCLC. RESULTS: There were differences in tongue image characteristics in the NSCLC group compared to the control group. The tongue quality and brightness of the tongue coating in the NSCLC group increased, the red component was reduced, the tongue coating thickened, and the yellow component increased compared to the healthy control group. A comparison of tongue image indexes of NSCLC in different pathological stages showed that stage IV had lower TB-b and higher TB-a than stage I. In addition, stage IV had lower TB-b than stage II + III, showing an increase in the blue and red components of the tongue in stage IV and the appearance of cyanotic tongue features. CONCLUSION: The tongue image characteristics of NSCLC patients differed from those of the control group. Tongue imaging indicators can reflect the characteristics of tongue images of patients with NSCLC. The tongue image characteristics of patients with stage IV lung cancer are bluish and purple compared with those with stage I, II, and III. It is suggested that the tongue's image characteristics can be used as a reference for the pathological classification of NSCLC and judgment of the disease process.

4.
Curr Opin Cell Biol ; 85: 102252, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37806293

RESUMO

After 60 years of chromatin investigation, our understanding of chromatin organization has evolved from static chromatin fibers to dynamic nuclear compartmentalization. Chromatin is embedded in a heterogeneous nucleoplasm in which molecules are grouped into distinct compartments, partitioning nuclear space through phase separation. Human genome organization affects transcription which controls euchromatin formation by excluding inactive chromatin. Chromatin condensates have been described as either liquid-like or solid-like. In this short review, we discuss the dynamic nature of chromatin from the perspective of biomolecular condensates and highlight new live-cell synthetic tools to probe and manipulate chromatin organization and associated condensates.


Assuntos
Condensados Biomoleculares , Núcleo Celular , Humanos , Núcleo Celular/genética , Cromatina/genética
5.
PLoS One ; 18(10): e0291592, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37906560

RESUMO

BACKGROUND: In the past two years, studies have found a significant increase in neutrophil extracellular traps (NETs) in patients with IgA vasculitis (IgAV), which is correlated with the severity of the disease. NETs have been reported as an intervention target in inflammatory and autoimmune diseases. This study aimed to investigate the effect of targeted degradation of NETs using DNase I in IgAV rat model. METHODS: Twenty-four Sprague-Dawley rats were randomly divided into three groups: the IgAV model group, the DNase I intervention group and the normal control group, with an average of 8 rats in each group. The model group was established by using Indian ink, ovalbumin, and Freund's complete adjuvant. In the intervention group, DNase I was injected through tail vein 3 days before the end of established model. The circulating cell free-DNA (cf-DNA) and myeloperoxidase-DNA (MPO-DNA) were analyzed. The presence of NETs in the kidney, gastric antrum and descending duodenum were detected using multiple fluorescences immunohistochemistry and Western blots. Morphological changes of the tissues were observed. RESULTS: After the intervention of DNase I, there was a significant reduction in cf-DNA and MPO-DNA levels in the intervention group compared to the IgAV model group (all P<0.001). The presence of NETs in renal, gastric, and duodenal tissues of the intervention group exhibited a significant decrease compared to the IgAV model group (P < 0.01). Moreover, the intervention group demonstrated significantly lower levels of renal MPO and citrullinated histone H3 (citH3) protein expression when compared to the IgAV model group (all P < 0.05). The HE staining results of intervention group demonstrated a significant reduction in congestion within glomerular and interstitial capillaries. Moreover, there was a notable improvement in gastric and intestinal mucosa necrosis, congestion and bleeding. Additionally, there was a substantial decrease in inflammatory cells infiltration. CONCLUSION: The degradation of NETs can be targeted by DNase I to mitigate tissue damage in IgAV rat models. Targeted regulation of NETs holds potential as a therapeutic approach for IgAV.


Assuntos
Armadilhas Extracelulares , Vasculite por IgA , Enteropatias , Humanos , Ratos , Animais , Armadilhas Extracelulares/metabolismo , Neutrófilos/metabolismo , Desoxirribonuclease I/metabolismo , Ratos Sprague-Dawley , Enteropatias/metabolismo , DNA/metabolismo
7.
J Colloid Interface Sci ; 652(Pt A): 329-340, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37597414

RESUMO

The rapid scavenging of reactive oxygen species (ROS) by glutathione (GSH) and insufficient endogenous hydrogen peroxide (H2O2) in tumor cells are the major factors greatly restricting the efficacy of chemodynamic therapy (CDT). Herein, we developed a tumor microenvironment (TME)-responsive Cu-based metal-mesoporous organosilica nanoplatform integrating vitamin k3 (VK3), which could deplete GSH and specifically regenerate H2O2 for amplified CDT of cancer. Once the CuO@MON-PEG/VK3 nanoparticles entered into the tumor cells through enhanced permeability and retention (EPR) effect, the organosilicon shell and CuO core would be successively degraded upon the triggering of GSH and endo/lysosomal acidity. Subsequently, the enriched tetrasulfide bridges and released Cu2+ could consume GSH substantially, thus triggering Fenton-like reaction for CDT. Furthermore, the released VK3 could be catalyzed by the highly expressed quinone oxidoreductase-1 (NQO1) inside tumor cells to generate sufficient H2O2 through a "reversible" redox cycle, which in turn promoted Cu+-mediated Fenton-like reaction. Both in vitro and in vivo studies demonstrated that this nanoplatform could achieve synergistic CDT against tumor through synergistic cycling regeneration of ROS and dual GSH exhaustion with excellent biosafety. Our finding highlight the promising potential of CuO@MON-PEG/VK3 nanoplatform with multiple oxidative stress amplification for highly efficient tumor therapy.


Assuntos
Nanopartículas , Neoplasias , Humanos , Cobre/farmacologia , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio/farmacologia , Glutationa , Concentração de Íons de Hidrogênio , Linhagem Celular Tumoral , Microambiente Tumoral
8.
PLoS One ; 18(7): e0288538, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37478141

RESUMO

BACKGROUND: Neutrophil extracellular traps (NETs) have been found to play a role in the development of autoimmune diseases. In the past two years, studies have demonstrated a significantly increase of NETs in skin tissues during the early stages of IgAV, indicating their involvement in disease activity among children with IgAV. However, the presence of NETs in IgAV animal models has not yet been reported. The objective of this study is to investigate whether NETs are involved in the pathogenesis of IgA vasculitis (IgAV) rats. METHODS: Twenty-four SD rats were randomly divided into three groups: the ovalbumin group, the gliadin group, and the control group. The IgAV rat models were established administering Indian ink with ovalbumin (ovalbumin group) or gliadin (gliadin group) with Freund's complete adjuvant. The cell-free DNA (cf-DNA) was quantified by using dsDNA quantification kit, while the levels of Immunoglobulins, complement C3 and myeloperoxidase-DNA (MPO-DNA) in serum were tested using enzyme linked immunosorbent assay (ELISA). The IgA, complement C3 and NETs in tissues were detected through multiple immunofluorescences. RESULTS: Both the ovalbumin group and gliadin group showed IgA and C3 deposition in various tissues, including the glomerular mesangial region, skin, and digestive tract, while the control group showed no such deposition. The levels of circulatory cf-DNA and MPO-DNA, which are components of NETs, were significantly elevated in both ovalbumin and gliadin groups compared with the control group. Furthermore, the presence of NETs were found in gastrointestinal and renal tissues of the ovalbumin and gliadin groups, but not in the control group. CONCLUSIONS: IgAV model rat can be established through the combination of ovalbumin and gliadin with Indian ink and Freund's complete adjuvant. This study provides the first confirmation that NETs are involved in the pathogenesis of IgAV rat.


Assuntos
Armadilhas Extracelulares , Vasculite por IgA , Criança , Humanos , Ratos , Animais , Complemento C3 , Ovalbumina , Gliadina , Ratos Sprague-Dawley , Imunoglobulina A , DNA
9.
Nat Commun ; 14(1): 2987, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37225690

RESUMO

The most widely used method for intracellular RNA fluorescence labeling is MS2 labeling, which generally relies on the use of multiple protein labels targeted to multiple RNA (MS2) hairpin structures installed on the RNA of interest (ROI). While effective and conveniently applied in cell biology labs, the protein labels add significant mass to the bound RNA, which potentially impacts steric accessibility and native RNA biology. We have previously demonstrated that internal, genetically encoded, uridine-rich internal loops (URILs) comprised of four contiguous UU pairs (8 nt) in RNA may be targeted with minimal structural perturbation by triplex hybridization with 1 kD bifacial peptide nucleic acids (bPNAs). A URIL-targeting strategy for RNA and DNA tracking would avoid the use of cumbersome protein fusion labels and minimize structural alterations to the RNA of interest. Here we show that URIL-targeting fluorogenic bPNA probes in cell media can penetrate cell membranes and effectively label RNAs and RNPs in fixed and live cells. This method, which we call fluorogenic U-rich internal loop (FLURIL) tagging, was internally validated through the use of RNAs bearing both URIL and MS2 labeling sites. Notably, a direct comparison of CRISPR-dCas labeled genomic loci in live U2OS cells revealed that FLURIL-tagged gRNA yielded loci with signal to background up to 7X greater than loci targeted by guide RNA modified with an array of eight MS2 hairpins. Together, these data show that FLURIL tagging provides a versatile scope of intracellular RNA and DNA tracking while maintaining a light molecular footprint and compatibility with existing methods.


Assuntos
Neoplasias de Células Escamosas , Neoplasias Cutâneas , Humanos , DNA/genética , Membrana Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , RNA , Uridina
10.
Front Mol Biosci ; 10: 1173545, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065447

RESUMO

Nuclear chromosome compaction is non-random and dynamic. The spatial distance among genomic elements instantly modulates transcription. Visualization of the genome organization in the cell nucleus is essential to understand nuclear function. In addition to cell type-dependent organization, high-resolution 3D imaging shows heterogeneous compaction of chromatin organization among the same cell type. Questions remain to be answered if these structural variations were the snapshots of dynamic organization at different time points and if they are functionally different. Live-cell imaging has provided unique insights into dynamic genome organization at short (milliseconds) and long (hours) time scales. The recent development of CRISPR-based imaging opened windows for studying dynamic chromatin organization in single cells in real time. Here we highlight these CRISPR-based imaging techniques and discuss their advances and challenges as a powerful live-cell imaging method that poses high potential to generate paradigm-shifting discoveries and reveal functional implications of dynamic chromatin organization.

11.
Front Endocrinol (Lausanne) ; 14: 1119201, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025407

RESUMO

Introduction: Type 2 diabetes mellitus (T2DM) has a high incidence rate globally, increasing the burden of death, disability, and the economy worldwide. Previous studies have found that the compositions of oral and intestinal microbiota changed respectively in T2DM; whether the changes were associated or interacted between the two sites and whether there were some associations between T2DM and the ectopic colonization of oral microbiota in the gut still need to be identified. Research design and methods: We performed a cross-sectional observational study; 183 diabetes and 74 controls were enrolled. We used high-throughput sequencing technology to detect the V3-V4 region of 16S rRNA in oral and stool samples. The Source Tracker method was used to identify the proportion of the intestinal microbiota that ectopic colonized from the oral cavity. Results: The oral marker bacteria of T2DM were found, such as Actinobacteria, Streptococcus, Rothia, and the intestinal marker bacteria were Bifidobacterium, Streptococcus, and Blautia at the genus level. Among them, Actinobacteria and Blautia played a vital role in different symbiotic relationships of oral and intestinal microbiota. The commonly distributed bacteria, such as Firmicutes, Bacteroidetes, and Actinobacteria, were found in both oral and intestine. Moreover, the relative abundance and composition of bacteria were different between the two sites. The glycine betaine degradation I pathway was the significantly up-regulated pathway in the oral and intestinal flora of T2DM. The main serum indexes related to oral and intestinal flora were inflammatory. The relative abundance of Proteobacteria in the intestine and the Spirochete in oral was positively correlated, and the correlation coefficient was the highest, was 0.240 (P<0.01). The proportion of ectopic colonization of oral flora in the gut of T2DM was 2.36%. Conclusion: The dysbacteriosis exited in the oral and intestine simultaneously, and there were differences and connections in the flora composition at the two sites in T2DM. Ectopic colonization of oral flora in the intestine might relate to T2DM. Further, clarifying the oral-gut-transmitting bacteria can provide an essential reference for diagnosing and treating T2DM in the future.


Assuntos
Actinobacteria , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Microbiota , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Estudos Transversais , Bactérias/genética , Actinobacteria/genética , Clostridiales/genética
12.
Environ Sci Pollut Res Int ; 30(19): 55079-55091, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36890403

RESUMO

Extensive application of nanomaterials enlarges its concentrations in the aquatic environments and poses a threat to algae. This study comprehensively analyzed the physiological and transcriptional responses of Chlorella sp. after being exposed to chromium (III) oxide nanoparticles (nCr2O3). The nCr2O3 at 0-100 mg/L presented adverse effects on cell growth (96 h EC50 = 16.3 mg/L), decreasing the photosynthetic pigment concentrations and photosynthetic activity. Moreover, more extracellular polymeric substances (EPS), especially polysaccharides in soluble EPS, were produced in algae cell, which mitigated the damage of nCr2O3 to cells. However, with the increase of nCr2O3 doses, the EPS protective responses were exhausted, accompanied by toxicity in the form of organelle damage and metabolic disturbance. The enhanced acute toxicity was closely related to the physical contact of nCr2O3 with cells, oxidative stress, and genotoxicity. Firstly, large amounts of nCr2O3 aggregated around and were attached to cells, causing physical damage. Then, the intracellular reactive oxygen species and malondialdehyde levels were significantly increased that led to lipid peroxidation, especially at 50-100 mg/L nCr2O3. Finally, the transcriptomic analysis further revealed that the transcription of ribosome, glutamine, and thiamine metabolism-related genes were impaired under 20 mg/L nCr2O3, suggesting nCr2O3 inhibited algal cell growth through metabolism, cell defense, and repair, etc.


Assuntos
Chlorella , Nanopartículas , Óxidos/metabolismo , Cromo/metabolismo , Nanopartículas/toxicidade
14.
J Cell Sci ; 136(4)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36718642

RESUMO

Dynamic chromatin organization instantly influences DNA accessibility through modulating local macromolecular density and interactions, driving changes in transcription activities. Chromatin dynamics have been reported to be locally confined but contribute to coherent chromatin motion across the entire nucleus. However, the regulation of dynamics, nuclear orientation and compaction of subregions along a single chromosome are not well-understood. We used CRISPR-based real-time single-particle tracking and polymer models to characterize the dynamics of specific genomic loci and determine compaction levels of large human chromosomal domains. Our studies showed that chromosome compaction changed during interphase and that compactions of two arms on chromosome 19 were different. The dynamics of genomic loci were subdiffusive and dependent on chromosome regions and transcription states. Surprisingly, the correlation between locus-dependent nuclear localization and mobility was negligible. Strong tethering interactions detected at the pericentromeric region implies local condensation or associations with organelles within local nuclear microenvironments, such as chromatin-nuclear body association. Based on our findings, we propose a 'guided radial model' for the nuclear orientation of the long arm of chromosome 19.


Assuntos
Núcleo Celular , Cromatina , Humanos , Núcleo Celular/fisiologia , Cromossomos Humanos , Interfase
15.
Environ Sci Pollut Res Int ; 30(10): 28227-28237, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36399297

RESUMO

The occurrence of metal oxide nanoparticles (NPs) in wastewater treatment plants (WWTPs) has raised great concerns about their adverse impacts on nitrification performance. In this study, a heterotrophic nitrifying bacterium Pseudomonas putida strain NP5 showed strong resistance against TiO2 and NiO NPs. Under 5-50 mg/L NP stress, cell viability was still normal, and the final nutrient removal rates, always higher than 80%, were slightly inhibited. Correspondingly, the PO43--P removal rates were almost the same as those observed in the control test. Although the enzyme assay demonstrated ammonia monooxygenase and hydroxylamine oxidoreductase activities markedly decreased caused by increased reactive oxygen species (ROS) level under 50 mg/L NPs stress. The total antioxidant capability of NP5 could eliminate excess ROS to maintain a balance between oxidants and antioxidants. Besides, in response to the escalating burden of NPs, strain NP5 tended to secrete more extracellular polymeric substances (EPS), which could protect cell from being damaged by binding to ions and coating. Thus, the strong NP resistance of NP5 would help to overcome the vulnerability of the nitrification process in WWTPs.


Assuntos
Nanopartículas Metálicas , Pseudomonas putida , Desnitrificação , Pseudomonas putida/metabolismo , Óxidos , Espécies Reativas de Oxigênio , Nitrificação , Processos Heterotróficos , Nitrogênio/metabolismo , Aerobiose
16.
Cancer Med ; 12(4): 4161-4169, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36161282

RESUMO

BACKGROUND: Intraperitoneal paclitaxel is proved to be efficient for peritoneal metastasis of gastric cancer. It remains uncertain the efficacy and safety of the triplets regimen which combined intraperitoneal high-dose paclitaxel with systemic SOX in gastric cancer patients with peritoneal metastasis. This study aimed to evaluate the efficacy and safety of intraperitoneal administration of high-dose paclitaxel, intravenous oxaliplatin and S-1 in patients with peritoneal metastatic gastric cancer. METHODS: This single-center, prospective, single-arm phase II study was conducted between January 2017 and May 2019 in West China Hospital, Sichuan University. Patients diagnosed with primary gastric cancer by histopathology and confirmed synchronous peritoneal metastasis were enrolled. This study aimed to evaluate efficacy and safety of intraperitoneal administration of high-dose paclitaxel (80 mg/m2 , d1), intravenous oxaliplatin (100 mg/m2 , d1), and S-1 (80 mg/m2 , d1-14) of patients. The primary endpoint was 1-year overall survival rate, and the second endpoints were progression-free survival (PFS), overall survival (OS), overall response rate (ORR), disease control rate (DCR) and adverse events. RESULTS: In this single-arm phase II clinical trial, 49 patients received SOX combined intraperitoneal high-dose paclitaxel treatment. One-year survival rate was 81.6% (95% CI, 68.6-90.0%). Median PFS and OS were 6.50 months (95% CI, 2.89-10.11) and 16.9 months (95% CI, 13.58 to 20.22), respectively; ORR was 55.3% (95% CI, 41.3-68.6) and DCR was 76.6% (95% CI, 62.8-86.4). Thirteen patients underwent second laparoscopic detection, but only nine ultimately underwent radical gastrectomy. Subgroup analysis showed that sPCI ≤12 was a good index for a favorable prognosis. The most frequent grade 3/4 toxicities were neutropenia (40.8%), anemia (22.4%), leukopenia (18.4%), nausea (14.3%), and vomiting (12.2%). None of the patients had any intraperitoneal catheter-related complications. CONCLUSIONS: Intraperitoneal high-dose paclitaxel with systemic SOX is an effective and tolerable first-line treatment for patients with peritoneal metastatic gastric cancer and patients with sPCI≤12 scores might be recommended crowd for this regimen as conversion therapy.


Assuntos
Neoplasias Peritoneais , Neoplasias Gástricas , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Oxaliplatina/uso terapêutico , Paclitaxel , Neoplasias Peritoneais/secundário , Estudos Prospectivos , Neoplasias Gástricas/patologia
17.
Front Psychiatry ; 13: 917111, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873245

RESUMO

Background: Late-life depression (LLD), characterized by cognitive deficits, is considered heterogeneous across individuals. Previous studies have identified subtypes with diverse symptom profiles, but their cognitive patterns are unknown. This study aimed to investigate the subtypes of LLD and the cognitive profile of each group. Methods: In total, 109 depressed older adults were enrolled. We performed latent class analysis using Geriatric Depression Scale items as indicators to generate latent classes. We compared the sociodemographic and clinical characteristics with cognitive functions between groups and conducted regression analysis to investigate the association between class membership and variables with significant differences. Results: Two classes were identified: the "pessimistic" group was characterized by pessimistic thoughts and the "worried" group with a relatively high prevalence of worry symptoms. The two groups did not differ in sociodemographic characteristics. The "pessimistic" group showed a higher rate of past history of depression and lower age of onset. The "worried" group had more physical comorbidities and a higher rate of past history of anxiety. The "pessimistic" group was more impaired in general cognitive function, executive function, information processing speed, and attention. Lower general and executive functions were associated with the membership in the "pessimistic" group. Conclusions: Subjects with pessimistic symptoms and subjects with a propensity to worry may form two distinct subtypes of late-life depression with different cognitive profiles. Further, the cognitive evaluation of subjects with pessimistic symptoms is of utmost importance.

18.
Front Immunol ; 13: 912929, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35799774

RESUMO

Immunoglobulin A vasculitis (IgAV) is the most common systemic small vessel vasculitis in childhood. Its clinical manifestations are non-thrombocytopenic purpura, accompanied by gastrointestinal tract, joint, kidney and other organ system involvement. The pathogenesis of IgAV has not been fully elucidated. It may be related to many factors including genetics, infection, environmental factors, and drugs. The most commonly accepted view is that galactose-deficient IgA1 and the deposition of IgA and complement C3 in small blood vessel walls are key contributors to the IgAV pathogenesis. Extensive neutrophil extracellular traps (NETs) in the peripheral circulation and skin, kidney, and gastrointestinal tissue of patients with IgAV has been identified in the past two years and is associated with disease activity. This mini-review provides a possible mechanism for NETs involvement in the pathogenesis of IgAV.


Assuntos
Armadilhas Extracelulares , Vasculite por IgA , Vasculite , Humanos , Imunoglobulina A , Rim
19.
Zhongguo Zhong Yao Za Zhi ; 47(11): 2909-2914, 2022 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-35718511

RESUMO

The seeds of Tripterygium wilfordii are characterized by dormancy and a long germination cycle under natural sowing conditions. In this study, we developed a method for rapid germination of T. wilfordii seeds by analyzing the size, morphology, thousand-grain weight, viability, moisture content, physicochemical properties, and seed germination rates under different germination conditions. The seeds of T. wilfordii were fine columnar with a thick and hard outer seed coat. They had the length of 6.69 mm, the width of 2.14 mm, the thickness of 1.68 mm, the thousand-grain weight of 8.99 g, the moisture content of 8.86%, the soluble sugar content of 21.3 mg·g~(-1), the starch content of 28.9 mg·g~(-1), the soluble protein content of 44.2 mg·g~(-1), and the seed viability of only 54.0%. The seeds were respectively treated with distilled water, ultrasonication, low-temperature storage, 50 ℃ water, 100 mg·L~(-1) 6-BA, 0.6% KMnO_4, 1% KNO_3, 50 mg·L~(-1) NAA, and 100 mg·L~(-1) GA_3 solution. The results showed that soaking the seeds in 100 mg·L~(-1) GA_3 solution significantly promoted the germination. Further, the seeds were soaked in 50, 100, 250, 500, and 1 000 mg·L~(-1) GA_3 solutions, which demonstrated that high concentration(500 mg·L~(-1), 1 000 mg·L~(-1)) of GA_3 solutions increased the germination rate and speed and shortened the germination cycle from more than 3 months to less than 15 days. The findings of this study are of great significance to the breeding of T. wilfordii and lay a foundation for the large-scale propagation of T. wilfordii seeds and the excavation of T. wilfordii germplasm resources.


Assuntos
Germinação , Tripterygium , Melhoramento Vegetal , Sementes/química , Água/análise
20.
BMC Cancer ; 22(1): 715, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768804

RESUMO

BACKGROUND: Adenosine-to-inosine RNA editing (ATIRE) is characterized as non-mutational epigenetic reprogramming hallmark of cancer, while little is known about its predictive role in cancer survival. METHODS: To explore survival-related ATIRE events in lung squamous cell carcinoma (LUSC), ATIRE profile, gene expression data, and corresponding clinical information of LUSC patients were downloaded from the TCGA database. Patients were randomly divided into a training (n = 134) and validation cohort (n = 94). Cox proportional hazards regression followed by least absolute shrinkage and selection operator algorithm were performed to identify survival-related ATIRE sites and to generate ATIRE risk score. Then a nomogram was constructed to predict overall survival (OS) of LUSC patients. The correlation of ATIRE level and host gene expression and ATIREs' effect on transcriptome expression were analyzed. RESULTS: Seven ATIRE sites that were TMEM120B chr12:122215052A > I, HMOX2 chr16:4533713A > I, CALCOCO2 chr17:46941503A > I, LONP2 chr16:48388244A > I, ZNF440 chr19:11945758A > I, CLCC1 chr1:109474650A > I, and CHMP3 chr2:86754288A > I were identified to generate the risk score, of which high levers were significantly associated with worse OS and progression-free survival in both the training and validation sets. High risk-score was also associated with advanced T stages and worse clinical stages. The nomogram performed well in predicting OS probability of LUSC. Moreover, the editing of ATIRE sites exerted a significant association with expression of host genes and affected several cancer-related pathways. CONCLUSIONS: This is the first comprehensive study to analyze the role of ATIRE events in predicting LUSC survival. The AITRE-based model might serve as a novel tool for LUSC survival prediction.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , RNA Longo não Codificante , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma de Células Escamosas/patologia , Canais de Cloreto/genética , Complexos Endossomais de Distribuição Requeridos para Transporte , Regulação Neoplásica da Expressão Gênica , Humanos , Pulmão/patologia , Neoplasias Pulmonares/patologia , Nomogramas , Prognóstico , Edição de RNA , RNA Longo não Codificante/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...