Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(14): 6324-6334, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38530282

RESUMO

The bottleneck in the preparation of supercapacitors is how to develop high-energy and high-power-density devices by using appropriate materials. Herein, a novel NixCo3-x-B/GO heterostructure material was synthesized through a simple ultrasonic and precipitation method. The prepared NixCo3-x-B/GO heterostructure exhibits significant improvements in supercapacitor performance than NixCo3-x-B. The presence of GO effectively suppresses the excessive growth and accumulation of NixCo3-x-B; therefore, Ni2.7Co0.3-B/GO exhibits the best performance as an electrode material for supercapacitors: a high specific capacitance (Cm, 1789.72 F g-1@1 A g-1) and excellent rate performance. The asymmetric supercapacitor (ASC) device of Ni2.7Co0.3-B/GO//AC exhibits a Cm of 76.6 F g-1@1 A g-1, a large voltage window of 1.6 V, and a high energy density (ED) of 98.0 Wh kg-1. Furthermore, a flexible, all-solid-state supercapacitor assembled with Ni2.7Co0.3-B/GO as both the positive and negative electrodes demonstrates a Cm of 46.9 F g-1@1 A g-1. Even after multiple folding and bending at various angles, the device maintains excellent performance, showcasing remarkable stability. With a power density (PD) of 479.7 W kg-1, the device achieves a high ED of 60.0 Wh kg-1. This work provides valuable insights into the synergistic effects in electrochemical processes based on heterostructure materials.

2.
Small ; : e2311810, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38385819

RESUMO

Low-temperature operation of sodium metal batteries (SMBs) at the high rate faces challenges of unstable solid electrolyte interphase (SEI), Na dendrite growth, and sluggish Na+ transfer kinetics, causing a largely capacity curtailment. Herein, low-temperature and fast-charge SMBs are successfully constructed by synergetic design of the electrolyte and electrode. The optimized weak-solvation dual-salt electrolyte enables high Na plating/stripping reversibility and the formation of NaF-rich SEI layer to stabilize sodium metal. Moreover, an integrated copper sulfide electrode is in situ fabricated by directly chemical sulfuration of copper current collector with micro-sized sulfur particles, which significantly improves the electronic conductivity and Na+ diffusion, knocking down the kinetic barriers. Consequently, this SMB achieves the reversible capacity of 202.8 mAh g-1 at -20 °C and 1 C (1 C = 558 mA g-1 ). Even at -40 °C, a high capacity of 230.0 mAh g-1 can still be delivered at 0.2 C. This study is encouraging for further exploration of cryogenic alkali metal batteries, and enriches the electrode material for low-temperature energy storage.

3.
Adv Sci (Weinh) ; 11(2): e2306919, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37985793

RESUMO

The design of catalysts with tunable active sites in heterogeneous interface structures is crucial for addressing challenges in the water-splitting process. Herein, a hollow spherical heterostructure FeCo-P is successfully prepared by hydrothermal and phosphorization methods. This hollow structure, along with the heterogeneous interface between Co2 P and FeP, not only facilitates the exposure of more active sites, but also increases the contact area between the catalyst and the electrolyte, as well as shortens the distance for mass/electron transfer. This enhancement promotes electron transfer to facilitate water decomposition. FeCo-P exhibits excellent hydrogen evolution (HER) and oxygen evolution (OER) performance when reaching @ 10 mA cm-2 in 1 mol L-1  KOH, with overpotentials of 131/240 mV for HER/OER. Furthermore, when FeCo-P is used as both the cathode and anode for overall water splitting (OWS), it only requires low voltages of 1.49, 1.55, and 1.57 V to achieve CDs of 10, 100, and 300 mA cm-2 , respectively. Density functional theory calculations indicate that constructing a Co2 P and FeP heterogeneous interface with good lattice matching can facilitate electron redistribution, thereby enhancing the electrocatalytic performance of OWS. This work opens up new possibilities for the rational design of efficient water electrolysis catalysts derived from MOFs.

4.
Small ; 20(16): e2307797, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38032156

RESUMO

The rational design of inexpensive metal electrocatalysts with exciting catalytic activity for overall water splitting (OWS) remains a significant challenge. Heterostructures of NiFe layered double hydroxides (NiFe-LDHs) with abundant oxygen defects and tunable electronic properties have garnered considerable attention. Here, a self-supporting heterostructured catalyst (named MoO3/NiFe-NF) is synthesized via a hydrothermal method to grow NiFe-LDH with oxygen vacancies (OV) in situ on inexpensive nickel foam (NF). Subsequently, MoO3 is anchored and grown on the surface of NiFe-LDH by electrodeposition. The obtained catalysts achieved outstanding oxygen/hydrogen evolution reaction (OER/HER, 212 mV/85 mV@10 mA cm-2) performance in 1 m KOH. Additionally, when MoO3/NiFe-NF is utilized as the cathode and anode in OWS, a current density of 10 mA cm-2 can be obtained as an ultralow battery voltage of 1.43 V, a significantly lower value compared to the commercial electrolyzer incorporating Pt/C and IrO2 electrode materials. Finally, density functional theory (DFT) calculations and advanced spectroscopy technology are conducted to reveal the effects of heterojunctions and OV on the internal electronic structure of the electrical catalysts. Mainly, the present study provides a novel tactic for the rational design of remarkable, low-cost NiFe-LDH electrocatalysts with heterostructures for OWS.

5.
Molecules ; 28(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38138497

RESUMO

Photocatalytic degradation of Malachite Green oxalate (MG) in a water body is of significant importance to our health protection, as it could cause various serious diseases. However the photocatalytic activity of most catalysts is still unsatisfactory, due to the poor reactive oxygen species production as a result of sluggish charge separation. Here, innovative nanoflower-shaped Bi2S3/BiFeO3 heterojunctions are prepared via a facile sol-gel method, exhibiting an enhanced reactive oxygen species generation, which leads to the excellent photocatalytic performance toward MG degradation. We verify that interfacing BiFeO3 with Bi2S3 could form a fine junction and offers a built-in field to speed up charge separation at the junction area; as a result, this shows much higher charge separation efficiency. By virtue of the aforementioned advantages, the as-prepared Bi2S3/BiFeO3 heterojunctions exhibit excellent photocatalytic performance toward MG degradation, where more than 99% of MG is removed within 2 h of photocatalysis. The innovative design of nanoflower-like Bi2S3/BiFeO3 heterojunctions may offer new viewpoints in designing highly efficient photocatalysts for environmentally related applications.

6.
Molecules ; 28(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38138526

RESUMO

Bisphenol A is one of the most widely used industrial compounds. Over the years, it has raised severe concern as a potential hazard to the human endocrine system and the environment. Developing robust and easy-to-use sensors for bisphenol A is important in various areas, such as controlling and monitoring water purification and sewage water systems, food safety monitoring, etc. Here, we report an electrochemical method to fabricate a bisphenol A (BPA) sensor based on a modified Au nanoparticles/multiwalled carbon nanotubes composite electrocatalyst electrode (AuCu-UPD/MWCNTs/GCE). Firstly, the Au-Cu alloy was prepared via a convenient and controllable Cu underpotential/bulk Au co-electrodeposition on a multiwalled modified carbon nanotubes glassy carbon electrode (GCE). Then, the AuCu-UPD/MWCNTs/GCE was obtained via the electrochemical anodic stripping of Cu underpotential deposition (UPD). Our novel prepared sensor enables the high-electrocatalytic and high-performance sensing of BPA. Under optimal conditions, the modified electrode showed a two-segment linear response from 0.01 to 1 µM and 1 to 20 µM with a limit of detection (LOD) of 2.43 nM based on differential pulse voltammetry (DPV). Determination of BPA in real water samples using AuCu-UPD/MWCNTs/GCE yielded satisfactory results. The proposed electrochemical sensor is promising for the development of a simple, low-cost water quality monitoring system for the detection of BPA in ambient water samples.

7.
Mikrochim Acta ; 190(4): 137, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36920658

RESUMO

A conventional colorimetric method based on CuS-catalyzed H2O2 is improved by a dual-modification strategy and employed for thioglycolic acid (TGA) determination. The doping of Co(II) can enhance ion exchange efficiency. Meanwhile, the modification of g-C3N4 can increase specific surface area and decrease unspecific aggregation. The constructed g-C3N4/Co-CuS nanocomposite exhibited a favorable catalytic feature. A Michaelis constant (Km) value of 0.02 mM has been achieved, which is 1/160 of those of CuS and horseradish peroxidase (HRP). The g-C3N4/Co-CuS displays a rapid color response in 3 min and resulted in a stable measurable signal within 10 min. In the determination procedure, the sulfhydryl contained in TGA is capable of preventing TMB oxidation via competing the ·OH produced by catalysis and caused a color distinction that is related to the TGA amount. The distinctions of absorbance (λmax = 652 nm) of different concentrations of TGA are recorded. Linearity is obtained in the ranges of 2.5 - 20 µM and 20 - 160 µM, and the LOD is 0.14 µM. In the real sample assays of perm agent and Qianhu lake water, the recoveries were 96.70 - 106.84% and 100.21 - 101.90%, respectively. This demonstrates that the proposed dual-modification strategy for CuS contributes to highly efficient and convenient determination of TGA in daily cosmetics and water analysis.


Assuntos
Colorimetria , Peroxidase , Colorimetria/métodos , Peróxido de Hidrogênio/análise , Água
8.
Nanomaterials (Basel) ; 12(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36500746

RESUMO

Herein, CuS was incorporated with ZnS to form a novel nanocomposite via cation exchange, and the product was then employed for dual application of the colorimetric determination and photocatalytic degradation of tetracycline (TC) in water. The formed p-n heterojunction provided an improved gap width and electron mobility, which could rapidly catalyze H2O2 to produce plenty of •OH, supporting a color conversion with TMB. Meanwhile, the addition of TC could lead to the further enhancement in colorimetric signal, and the distinction level was sensitive to the target amount. Additionally, under light conditions, the p-CuS/n-ZnS could produce •O2-, •OH, and h+ through photocatalysis, and these ions could degrade the TC via oxidation. In the colorimetric determination of TC, the signal responses were obtained within 10 min, and the detection limit was 20.94 nM. The recovery rates were 99% and 106% for the water samples from Ganjiang river. In the photocatalytic degradation, the TC was degraded by 91% within 120 min, which was threefold that of ZnS. Meanwhile, the morphology feature of the p-CuS/n-ZnS remained after multiple uses, suggesting a favorable material stability. This strategy provides application prospects for the monitoring and control of antibiotics in water.

9.
Nanomaterials (Basel) ; 12(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35745426

RESUMO

Metal sulfide is often utilized as a catalyzed material to form colorimetric response system for some heavy metal detection. While the aggregation effect and conventional morphology limited the catalyzed efficiency. Herein, a robust method based on morphology adjustment was proposed to improve the dispersibility and catalytic performance of CuS. The results demonstrated when the solvent ratio of ethylene glycol and dimethyl sulfoxide arrived at 3:1, it displayed an optimal structure which is like a patulous flower. Meanwhile, an optimal surface binding energy (ΔE) of 120.1 kcal/mol was obtained via theoretical calculation model. The flower-like structure caused a 2-fold increase in the catalytic level. Subsequently, the CuS was employed to make colorimetric detection of Cr(VI) in water. The assay results exhibited a linear range of the Cr(VI) from 60 to 340 nM, the limit of detection was 1.07 nM. In the practical tests for Qianhu lake water, the spiked recoveries were 93.6% and 104% with the RSD of 4.71% and 3.08%. Therefore, this CuS-based colorimetric method possesses a satisfactory application prospect for the Cr(VI) determination in water.

10.
Chem Commun (Camb) ; 56(79): 11783-11786, 2020 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-32960191

RESUMO

A facile synthetic method is developed to afford cyclodextrin-derived polymer networks that exhibit high selectivity in capturing certain organic compounds in water. The sustainable and scalable synthesis, together with the highly robust adsorption performance enables efficient removal and/or separation of organic molecules from aqueous solution in a continuous flow system.

11.
Commun Chem ; 3(1): 43, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36703416

RESUMO

Single-atom catalysts have emerged as a new frontier in catalysis science. However, their applications are still limited to small molecule activations in the gas phase, the classic organic transformations catalyzed by single-atom catalysts are still rare. Here, we report the use of a single-atom Pd catalyst for the classic Suzuki-Miyaura carbon-carbon coupling reaction under phosphine-free and open-air conditions at room temperature. The single-atom Pd catalyst is prepared through anchoring Pd on bimetal oxides (Pd-ZnO-ZrO2). The significant synergetic effect of ZnO and ZrO2 is observed. The catalyst exhibits high activity and tolerance of a wide scope of substrates. Characterization demonstrates that Pd single atoms are coordinated with two oxygen atoms in Pd-ZnO-ZrO2 catalyst. The catalyst can be fabricated on a multi-gram scale using a simple in situ co-precipitation method, which endows this catalytic system with great potential in practical applications.

12.
Chem Commun (Camb) ; 54(83): 11817-11820, 2018 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-30280725

RESUMO

Hierarchically porous UiO-66 (HP-UiO-66) with a particle size of ∼5 nm was synthesized without the use of modulating reagents. The HP-UiO-66 material exhibits good thermal and structural stability, and shows excellent performance in uptaking large molecules and catalyzing the acetalization reaction of furfural.

13.
Anal Chem ; 90(8): 5147-5152, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29590527

RESUMO

Manganese dioxide nanoflowers (MnO2 NFs) were synthesized and used as a dual readout probe to develop a novel immunochromatographic test strip (ITS) for detecting pesticide residues using chlorpyrifos as the model analyte. MnO2 NFs-labeled antibody for chlorpyrifos was employed as the signal tracer for conducting the ITS. After 10 min competitive immunoreaction, the tracer antibody was captured by the immobilized immunogen in the test strip, resulting in the captured MnO2 NFs on test line. The captured MnO2 NFs led to the appearance of brown color on the test line, which could be easily observed by the naked eye as a qualitative readout. Due to the very slight colorimetric difference of chlorpyrifos at trace concentrations, the semiquantitative readout by naked eyes could not meet the demand of quantitative analysis. MnO2 NFs showed a significant effect on the luminol-H2O2 chemiluminescent (CL) system, and the CL signal driven by MnO2 NFs were used to detect the trace concentration of chlorpyrifos quantitatively. 1,3-Diphenylisobenzofuran quenching studies and TMB-H2O2 coloration assays were conducted for studying the enhancing mechanism of MnO2 NFs, which was based on the oxidant activity to decompose H2O2 for forming reactive oxygen species. Under optimal conditions, the linear range of chlorpyrifos was 0.1-50 ng/mL with a low detection limit of 0.033 ng/mL (S/N = 3). The reliability of the dual-readout ITS was successfully demonstrated by the application on traditional Chinese medicine and environmental water samples. Due to the simultaneous rapid-qualitative and sensitive-quantitative detection, the dual-readout protocol provides a promising strategy for rapid screening and field assay on various areas such as environmental monitoring and food safety.


Assuntos
Clorpirifos/análise , Colorimetria , Substâncias Luminescentes/química , Compostos de Manganês/química , Nanopartículas/química , Óxidos/química , Astrágalo/química , Imunoensaio , Tamanho da Partícula , Propriedades de Superfície , Poluentes Químicos da Água/química , Wolfiporia/química
14.
Biosens Bioelectron ; 106: 43-49, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29414087

RESUMO

Graphitic carbon nitride/bismuth ferrite nanocomposites (g-C3N4/BiFeO3 NCs) were synthesized by a facile one step sol-gel combustion method and employed as a peroxidase-like catalyst. Based on the catalytical activity on the luminol-H2O2 reaction, the nanocomposites were utilized as a colorimetric/chemiluminescent dual-readout immunochromatographic assay (ICA) for the multiplexed detection of pesticide residues by utilizing chlorpyrifos and carbaryl as the model analytes. In the proposed protocol, chlorpyrifos antibody and carbaryl antibody were tagged to g-C3N4/BiFeO3 NCs for developing the spatially-resolved multianalyte ICA. After two competitive immunoreactions completed on the ICA test strip, the tracer antibodies were captured by the immobilized antigens on two test lines. The accumulation of g-C3N4/BiFeO3 NCs led to the appearance of brown color, which were observed as a colorimetric and semi-quantitative signal. Furthermore, the g-C3N4/BiFeO3 NCs-driven generation of CL signal was collected as a sensitively quantitative signal after initiating the luminol-H2O2 reaction on the test lines. Under the optimal conditions, the limits of detection of chlorpyrifos and carbaryl were both 0.033ng/mL. The dual-readout ICA was successfully used to detect chlorpyrifos and carbaryl spiked in environmental water and traditional Chinese medicine samples with acceptable recovery values of 80-119% and 90-118%. Due to many advantages including low cost, time efficiency, high sensitivity and good portability, the novel ICA showed great potential in many areas such as drug safety, environmental monitoring and clinical diagnosis.


Assuntos
Técnicas Biossensoriais , Cromatografia de Afinidade , Medições Luminescentes , Resíduos de Praguicidas/isolamento & purificação , Colorimetria , Peróxido de Hidrogênio/química , Limite de Detecção , Nanocompostos/química , Resíduos de Praguicidas/química
15.
Analyst ; 140(8): 2778-84, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25715950

RESUMO

A novel ratiometric fluorescent Hg(2+) detecting system was rationally developed based on the typical excited state intramolecular proton transfer (ESIPT) characteristic of the latent fluorophore, 2-(1-(p-tolyl)-1H-phenanthro[9,10-d]imidazol-2-yl)phenol (Pol) and the Hg(2+)-mediated cleavage of the vinyl group. The probe responds selectively to Hg(2+) over various other metal ions with a larger bathochromic shift (∼100 nm). The sensing mechanism was investigated in detail by fluorescence spectroscopy, NMR spectra and mass spectrometry. Taking advantage of the enhancement effect of dichloromethane on the ESIPT efficiency, a facile dichloromethane extraction was introduced in the process of detection of Hg(2+), which affords a high sensitivity for the probe with a detection limit of 7.8 × 10(-9) M for Hg(2+). By using the new strategy, the novel probe can be used for the detection of Hg(2+) in practical water samples with good recovery. Moreover, the probe was successfully applied to the fluorescence image of Hg(2+) in living cells. These results indicated that the probe and the proposed method have promising applications for Hg(2+) sensing in biological and environmental sciences.


Assuntos
Corantes Fluorescentes/química , Mercúrio/análise , Mercúrio/química , Prótons , Sobrevivência Celular , Células HeLa , Humanos , Limite de Detecção , Imagem Óptica , Soluções , Espectrometria de Fluorescência , Água/química
16.
Talanta ; 122: 285-92, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24720997

RESUMO

Graphene oxide (GO)-thionine (TH) nanocomposite was prepared by π-π stacking. The nanocomposite was cast-coated on a glassy carbon electrode (GCE) to prepare an electroreduced GO (ERGO)-TH/GCE, then 2-mercaptoethanesulfonate (MES) was covalently tethered to ERGO-TH by potentiostatic anodization to form an ERGO-TH-MES/GCE. The thiolation reaction was monitored by electrochemical quartz crystal microbalance (EQCM). Square wave anodic stripping voltammetry (SWASV) was used to determine Cd(2+) and Pb(2+) at the ERGO-TH-MES/GCE further modified with Nafion and Bi. Under the optimal conditions, the linear calibration curves for Cd(2+) and Pb(2+) are from 1 to 40 µg L(-1), with limits of detection (S/N=3) of 0.1 µg L(-1) for Cd(2+) and 0.05 µg L(-1) for Pb(2+), respectively. The electrode was used for the simultaneous analysis of Cd(2+) and Pb(2+) in water samples with satisfactory recovery.


Assuntos
Bismuto/química , Cádmio/análise , Grafite/química , Chumbo/análise , Óxidos/química , Fenotiazinas/química , Técnicas Eletroquímicas/métodos , Eletrodos , Oxirredução , Compostos de Sulfidrila/química
17.
Environ Technol ; 34(13-16): 2285-90, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24350483

RESUMO

Amorphous titanium dioxide nanotube arrays (TiO2 NTs) were prepared by a simple anodization process without subsequent calcination at high temperature, and the effectiveness of amorphous TiO2 NTs as adsorbents in removing arsenite (As(III)) and arsenate (As(V)) was investigated. The TiO2 NTs were not only effective for arsenic removal without a pre-oxidation of As(III) to As(V) and/or adjusting the pH value of water before the adsorption process, but also can be separated and recovered easily from the solution. The adsorption kinetics and adsorption capacity of the amorphous TiO2 NTs for As(III) and As(V) were studied separately by batch experiments. The apparent values for Langmuir monolayer sorption capacities were 28.9 mg/g for As(III) and 24.7 mg/g for As(V) at pH 7. Kinetics studies indicated that the adsorption process on TiO2 NTs followed a pseudo-second-order kinetics model. Arsenic adsorption of TiO2 NTs remains stable over a broad pH range. Moreover, the TiO2 NTs have excellent stability and regeneration, and they can be used repeatedly at least five times.


Assuntos
Arsenicais/isolamento & purificação , Nanotubos/química , Titânio/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Adsorção , Arsenicais/química , Cinética , Poluentes Químicos da Água/química
18.
Chemistry ; 18(45): 14359-66, 2012 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-22996696

RESUMO

Herein, a chemically bonded BiOBr-graphene composite (BiOBr-RG) was prepared through a facile in situ solvothermal method in the presence of graphene oxide. Graphene oxide could be easily reduced to graphene under solvothermal conditions, and simultaneously BiOBr nanoplates with pure tetragonal phase were grown uniformly on the graphene surface. The structure and photoelectrochemical properties of the resulting materials were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and impedance and photocurrent action measurements. The combination of BiOBr and graphene introduces some properties of graphene into the photocatalysis reaction, such as excellent conductivity, adsorptivity, and controllability. A remarkable threefold enhancement in the degradation of rhodamine B (RhB) was observed with as-prepared BiOBr-RG as compared with pure BiOBr under visible light (λ>420 nm). The enhanced photocatalytic activity could be attributed to the great adsorptivity of dyes, the extended photoresponse range, the negative shift in the Fermi level of BiOBr-RG, and the high migration efficiency of photoinduced electrons, which may effectively suppress the charge recombination.

19.
J Hazard Mater ; 192(3): 949-55, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21782333

RESUMO

A novel Cu (II) magnetic ion-imprinted polymer (MIIP) was synthesized by surface imprinting technique combined with a sol-gel process. The adsorbent of Cu (II)-MIIP shows higher capacity and selectivity than that of magnetic non-imprinted polymers (MNIP). Adsorption capacities of Cu (II)-MIIP and MNIP are 24.2 and 5.2mg/g for Cu (II) ions, respectively. The selectivity coefficients of the Cu (II)-MIIP for Cu (II)/Zn (II) and Cu (II)/Ni (II) are 91.84 and 133.92, respectively. Kinetics studies show that the adsorption process obeys pseudo-second-order rate mechanism with an initial adsorption rate of 132.48 for Cu (II)-MIIP and 2.41mgg(-1)min(-1) for MNIP. In addition, no obvious decrease was observed after up to five adsorption cycles, indicating that the Cu (II)-MIIP is of high stability.


Assuntos
Química/métodos , Cobre/química , Íons , Adsorção , Cinética , Magnetismo , Modelos Químicos , Transição de Fase , Polímeros/química , Propriedades de Superfície , Fatores de Tempo , Difração de Raios X , Zinco/química
20.
J Hazard Mater ; 187(1-3): 274-82, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21269767

RESUMO

Novel magnetic and hydrophilic molecularly imprinted polymers (mag-MIPs) were prepared by an inverse emulsion-suspension polymerization to remove water-soluble acid dyes from contaminated water with 1-(α-methyl acrylate)-3-methylimidazolium bromide (1-MA-3MI-Br) being utilized as a new functional monomer. The thermal stability, chemical structure and magnetic property of the 1-MA-3MI-Br-mag-MIPs were characterized by the thermal-gravimetric analyzer (TGA), Fourier transform infrared spectrometer (FT-IR) and vibrating sample magnetometer (VSM), respectively. Moreover, effect of concentration and pH value of water-soluble acid dye solutions was optimized. Compared with the methyl acrylic acid and 4-vinylpyridine modified mag-MIPs, the 1-MA-3MI-Br-mag-MIPs showed enhanced removal efficiency. Kinetic studies depicted that the adsorption process on 1-MA-3MI-Br-mag-MIPs followed pseudo-second-order rate mechanism. Investigation results of 5 times removal-regeneration cycles by employing the 1-MA-3MI-Br-mag-MIPs showed that the resulting material was with high stability.


Assuntos
Corantes/isolamento & purificação , Magnetismo , Polímeros/química , Poluentes Químicos da Água/isolamento & purificação , Ácidos/química , Corantes/química , Cinética , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Água/química , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...