Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 602, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635417

RESUMO

Regular water management is crucial for the cultivation of tomato (Solanum lycopersicum L.). Inadequate irrigation leads to water stress and a reduction in tomato yield and quality. Therefore, it is important to develop an efficient classification method of the drought status of tomato for the timely application of irrigation. In this study, a simple classification and regression tree (CART) model that includes air temperature, vapor pressure deficit, and leaf-air temperature difference was established to classify the drought status of three tomato genotypes (i.e., cherry type 'Tainan ASVEG No. 19', large fruits breeding line '108290', and wild accession 'LA2093'). The results indicate that the proposed CART model exhibited a higher predictive sensitivity, specificity, geometric mean, and accuracy performance compared to the logistic model. In addition, the CART model was applicable not only to three tomato genotypes but across vegetative and reproductive stages. Furthermore, while the drought status was divided into low, medium, and high, the CART model provided a higher predictive performance than that of the logistic model. The results suggest that the drought status of tomato can be accurately classified by the proposed CART model. These results will provide a useful tool of the regular water management for tomato cultivation.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Temperatura , Secas , Melhoramento Vegetal , Folhas de Planta/genética , Genótipo
2.
Bot Stud ; 61(1): 17, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32435923

RESUMO

BACKGROUND: The cropping area of genetically modified (GM) crops has constantly increased since 1996. However, currently, cultivating GM crops is associated with many concerns. Transgenes are transferred to non-GM crops through pollen-mediated gene flow, which causes environmental problems such as superweeds and introgressive hybridization. Rapeseed (Brassica napus L.), which has many GM varieties, is one of the most crucial oil crops in the world. Hybridization between Brassica species occurs spontaneously. B. rapa grows in fields as a weed and is cultivated as a crop for various purposes. Both B. rapa weeds and crops participate in gene flow among rapeseed. Therefore, gene flow risk and the coexistence of these two species should be studied. RESULTS: In this study, field experiments were conducted at two sites for 4 years to evaluate gene flow risk. In addition, zero-inflated models were used to address the problem of excess zero values and data overdispersion. The difference in the number of cross-pollination (CP) events was nonsignificant between upwind and downwind plots. The CP rate decreased as the distance increased. The average CP rates at distances of 0.35 and 12.95 m were 2.78% and 0.028%, respectively. In our results, zero-inflated negative binomial models were comprehensively superior to zero-inflated Poisson models. The models predicted isolation distances of approximately 1.36 and 0.43 m for the 0.9% and 3% threshold labeling levels, respectively. CONCLUSIONS: Cultivating GM crops is prohibited in Taiwan; however, the study results can provide a reference for the assessment of gene flow risk and the coexistence of these two species in Asian countries establishing policies for GM crops.

3.
Bot Stud ; 61(1): 1, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31965392

RESUMO

BACKGROUND: Unintentional introgression from genetically modified (GM) oilseed rape (Brassica napus) to a relative is inevitable in the open field. A feasible and practical strategy for restricting the spread of GM offspring is to set a reasonable isolated distance between GM B. napus and the relatives. To define the isolated distance, a pollen donor/recipient pair is a prerequisite to conducting the field trial of pollen flow. However, because the cultivation of GM B. napus is prohibited in Taiwan, it is difficult to obtain relevant information. Thus, this study explored the morphological and genetic characteristics of five varieties of B. napus (donor), three varieties of B. rapa (recipient), and the 15 corresponding F1 hybrids, aiming to construct phenotypic data and genetic variation data and to select the most appropriate pollen donor/recipient for future field trials of pollen flow. RESULTS: The genome size of all F1 hybrids estimated using flow cytometry showed intermediate DNA content between B. napus and B. rapa varieties. Most of the F1 hybrids had intermediate plant height and blooming period, and the rosette leaves type and colors resembled those of B. napus varieties. The results of sequence-related amplified polymorphism (SRAP) showed an average of 9.52 bands per primer combination and 67.87 polymorphic bands among the F1 hybrid population. Similarity and cluster analyses revealed higher similarity between F1 hybrids and B. napus varieties than between F1 hybrids and B. rapa varieties. Furthermore, we identified a specific 1100-bp band (LOC106302894) in F1 hybrids and B. napus varieties but not in B. rapa varieties. CONCLUSIONS: The rosette leaves and the DNA marker LOC106302894 observed in F1 hybrids are consistent phenotypic and genetic characteristics that can be used to identify the presence of unintentional hybridization from B. napus to B. rapa in Taiwan. Due to the prohibition of GM crop cultivation, the hybridization system of non-GM Brassica species in this study can be utilized as a mimic scheme to conduct pollen flow trials, thus facilitating the determination of the proper isolated distance.

4.
Biosci Biotechnol Biochem ; 84(1): 43-52, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31495297

RESUMO

To date, studies on the application of loop-mediated isothermal amplification (LAMP) in the detection of genetically modified organisms (GMOs) are stably increasing and demonstrates LAMP is a potential and promising method for on spot identification of GMOs. However, little information is known for detection of GM potato events by LAMP. In this report, we developed an optimized and visual LAMP assay with high specificity and sensitivity to rapidly amplify genomic DNA of potato EH92-527-1 within 45 min. The limit of detection of LAMP in our study is 10-fold higher than the conventional PCR. Furthermore, LAMP products can be directly observed via naked eyes by addition of SYBR Green I without gel electrophoresis analysis and PCR-based equipment. Therefore, the LAMP assay developed in this paper provides an efficient, convenient and cost-effective tool for the detection of GM potato EH92-527-1.


Assuntos
DNA de Plantas/genética , Plantas Geneticamente Modificadas/genética , Reação em Cadeia da Polimerase/instrumentação , Reação em Cadeia da Polimerase/métodos , Solanum tuberosum/genética , Sequência de Bases/genética , Benzotiazóis , Percepção de Cores , Primers do DNA/genética , Enzimas de Restrição do DNA/genética , Diaminas , Eletroforese em Gel de Ágar , Corantes Fluorescentes/química , Contaminação de Alimentos/análise , Amplificação de Genes , Limite de Detecção , Compostos Orgânicos/química , Reação em Cadeia da Polimerase/economia , Quinolinas , Sensibilidade e Especificidade , Temperatura , Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...