Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(5)2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36903821

RESUMO

BiFeO3-based ceramics possess an advantage over large spontaneous polarization and high Curie temperature, and are thus widely explored in the field of high-temperature lead-free piezoelectrics and actuators. However, poor piezoelectricity/resistivity and thermal stability of electrostrain make them less competitive. To address this problem, (1 - x) (0.65BiFeO3-0.35BaTiO3)-xLa0.5Na0.5TiO3 (BF-BT-xLNT) systems are designed in this work. It is found that piezoelectricity is significantly improved with LNT addition, which is contributed by the phase boundary effect of rhombohedral and pseudocubic phase coexistence. The small-signal and large-signal piezoelectric coefficient (d33 and d33*) peaks at x = 0.02 with 97 pC/N and 303 pm/V, respectively. The relaxor property and resistivity are enhanced as well. This is verified by Rietveld refinement, dielectric/impedance spectroscopy and piezoelectric force microscopy (PFM) technique. Interestingly, a good thermal stability of electrostrain is obtained at x = 0.04 composition with fluctuation η = 31% (Smax'-SRTSRT×100%), in a wide temperature range of 25-180 °C, which is considered as a compromise of negative temperature dependent electrostrain for relaxors and the positive one for ferroelectric matrix. This work provides an implication for designing high-temperature piezoelectrics and stable electrostrain materials.

2.
Adv Mater ; 34(39): e2203283, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35972840

RESUMO

Room-temperature-operating highly sensitive mid-wavelength infrared (MWIR) photodetectors are utilized in a large number of important applications, including night vision, communications, and optical radar. Many previous studies have demonstrated uncooled MWIR photodetectors using 2D narrow-bandgap semiconductors. To date, most of these works have utilized atomically thin flakes, simple van der Waals (vdW) heterostructures, or atomically thin p-n junctions as absorbers, which have difficulty in meeting the requirements for state-of-the-art MWIR photodetectors with a blackbody response. Here, a fully depleted self-aligned MoS2 -BP-MoS2 vdW heterostructure sandwiched between two electrodes is reported. This new type of photodetector exhibits competitive performance, including a high blackbody peak photoresponsivity up to 0.77 A W-1 and low noise-equivalent power of 2.0 × 10-14  W Hz-1/2 , in the MWIR region. A peak specific detectivity of 8.61 × 1010  cm Hz1/2  W-1 under blackbody radiation is achieved at room temperature in the MWIR region. Importantly, the effective detection range of the device is twice that of state-of-the-art MWIR photodetectors. Furthermore, the device presents an ultrafast response of ≈4 µs both in the visible and short-wavelength infrared bands. These results provide an ideal platform for realizing broadband and highly sensitive room-temperature MWIR photodetectors.

3.
Phys Rev Lett ; 124(10): 106403, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32216384

RESUMO

We report a detailed study of tunneling spectra measured on 2H-Ta_{x}Nb_{1-x}Se_{2} (x=0∼0.1) single crystals using a low-temperature scanning tunneling microscope. The prominent gaplike feature, which has not been understood for a long time, was found to be accompanied by some "in-gap" fine structures. By investigating the second-derivative spectra and their temperature and magnetic field dependencies, we were able to prove that inelastic electron tunneling is the origin of these features and obtain the Eliashberg function of 2H-Ta_{x}Nb_{1-x}Se_{2} at an atomic scale, providing a potential way to study the local Eliashberg function and the phonon spectra of the related transition-metal dichalcogenides.

4.
Phys Chem Chem Phys ; 20(10): 7125-7131, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29479594

RESUMO

Chiral switching of the self-assembled domains of CuPc molecules on the Cd(0001) surface has been investigated by means of a low temperature scanning tunneling microscopy (STM). With the coverage increasing, the CuPc molecules show the structural evolutions from an initial gas-like state to a network phase, a square phase, and finally to a compact phase at full monolayer. In the network and square phases, the achiral CuPc molecules reveal both the point chirality and chiral domains. In particular, the chirality of network domain can be switched from one enantiomer to another driven by the electric filed from a STM tip, which can also lead to the lattice rotation of network phase. These results demonstrate that (i) there is strong interaction between the CuPc molecules and STM tip; (ii) the adsorbed CuPc molecules carry considerable net charge or polarizability due to the charge transfer; (iii) the network phase has a low barrier for the interconversion between right- and left-handed domains. Our findings are significant for the understanding and control of the domain's chirality in the self-assembled structures.

5.
Phys Rev Lett ; 121(25): 256001, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30608818

RESUMO

When adsorbed on solids, water molecules are usually arranged into a honeycomb hydrogen-bond network. Here we report the discovery of a novel monolayer ice built exclusively from water hexamers but without shared edges, distinct from all conventional ice phases. Water grown on graphite crystalizes into a robust monolayer ice after annealing, attaining an exceedingly high density of 0.134 Å^{-2}. Unlike chemisorbed ice on metal surfaces, the ice monolayer can translate and rotate on graphite terraces and grow across steps, confirming its two-dimensional nature. First-principles calculations identify the monolayer ice structure as a robust self-assembly of closely packed water hexamers without edge sharing, whose stability is maintained by maximizing the number of intralayer hydrogen bonds on inert surfaces.

6.
Molecules ; 22(5)2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28471385

RESUMO

Molecular rotors with an off-center axis and the chiral feature of achiral CuPc molecules on a semi-metallic Bi(111) surface have been investigated by means of a scanning tunneling microscopy (STM) at liquid nitrogen (LN2) temperature. The rotation axis of each CuPc molecular rotor is located at the end of a phthalocyanine group. As molecular coverage increases, the CuPc molecules are self-assembled into various nanoclusters and finally into two-dimensional (2D) domains, in which each CuPc molecule exhibits an apparent chiral feature. Such chiral features of the CuPc molecules can be attributed to the combined effect of asymmetric charge transfer between the CuPc and Bi(111) substrate, and the intermolecular van der Waals interactions.


Assuntos
Bismuto/química , Dimerização , Microscopia de Tunelamento , Estereoisomerismo , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...