Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 62017 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-28362262

RESUMO

Macrophages produce genotoxic agents, such as reactive oxygen and nitrogen species, that kill invading pathogens. Here we show that these agents activate the DNA damage response (DDR) kinases ATM and DNA-PKcs through the generation of double stranded breaks (DSBs) in murine macrophage genomic DNA. In contrast to other cell types, initiation of this DDR depends on signaling from the type I interferon receptor. Once activated, ATM and DNA-PKcs regulate a genetic program with diverse immune functions and promote inflammasome activation and the production of IL-1ß and IL-18. Indeed, following infection with Listeria monocytogenes, DNA-PKcs-deficient murine macrophages produce reduced levels of IL-18 and are unable to optimally stimulate IFN-γ production by NK cells. Thus, genomic DNA DSBs act as signaling intermediates in murine macrophages, regulating innate immune responses through the initiation of a type I IFN-dependent DDR.


Assuntos
Regulação da Expressão Gênica , Imunidade Inata , Inflamassomos/metabolismo , Interferon Tipo I/metabolismo , Listeria monocytogenes/imunologia , Macrófagos/imunologia , Animais , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Camundongos , Proteínas Quinases/metabolismo
2.
Nat Commun ; 7: 12425, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27498558

RESUMO

Poly (ADP-ribose) polymerase (PARP) inhibitor (PARPi) olaparib has been approved for treatment of advanced ovarian cancer associated with BRCA1 and BRCA2 mutations. BRCA1- and BRCA2-mutated cells, which are homologous recombination (HR) deficient, are hypersensitive to PARPi through the mechanism of synthetic lethality. Here we examine the effect of PARPi on HR-proficient cells. Olaparib pretreatment, PARP1 knockdown or Parp1 heterozygosity of Brca2(cko/ko) mouse embryonic stem cells (mESCs), carrying a null (ko) and a conditional (cko) allele of Brca2, results in viable Brca2(ko/ko) cells. PARP1 deficiency does not restore HR in Brca2(ko/ko) cells, but protects stalled replication forks from MRE11-mediated degradation through its impaired recruitment. The functional consequence of Parp1 heterozygosity on BRCA2 loss is demonstrated by a significant increase in tumorigenesis in Brca2(cko/cko) mice. Thus, while olaparib efficiently kills BRCA2-deficient cells, we demonstrate that it can also contribute to the synthetic viability if PARP is inhibited before BRCA2 loss.


Assuntos
Proteína BRCA2/deficiência , Poli(ADP-Ribose) Polimerase-1/deficiência , Animais , Proteína BRCA2/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Recombinação Homóloga/efeitos dos fármacos , Humanos , Integrases/metabolismo , Proteína Homóloga a MRE11/metabolismo , Camundongos , Modelos Biológicos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Células-Tronco Embrionárias Murinas/metabolismo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia
3.
Mol Cell ; 56(6): 808-18, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25435138

RESUMO

The structure of broken DNA ends is a critical determinant of the pathway used for DNA double-strand break (DSB) repair. Here, we develop an approach involving the hairpin capture of DNA end structures (HCoDES), which elucidates chromosomal DNA end structures at single-nucleotide resolution. HCoDES defines structures of physiologic DSBs generated by the RAG endonuclease, as well as those generated by nucleases widely used for genome editing. Analysis of G1 phase cells deficient in H2AX or 53BP1 reveals DNA ends that are frequently resected to form long single-stranded overhangs that can be repaired by mutagenic pathways. In addition to 3' overhangs, many of these DNA ends unexpectedly form long 5' single-stranded overhangs. The divergence in DNA end structures resolved by HCoDES suggests that H2AX and 53BP1 may have distinct activities in end protection. Thus, the high-resolution end structures obtained by HCoDES identify features of DNA end processing during DSB repair.


Assuntos
Cromossomos Humanos/genética , Análise de Sequência de DNA/métodos , Sequência de Bases , Células Cultivadas , Quebras de DNA de Cadeia Dupla , Humanos
5.
Mol Cell Biol ; 34(15): 2811-21, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24842905

RESUMO

The resection of broken DNA ends is required for DNA double-strand break (DSB) repair by homologous recombination (HR) but can inhibit normal repair by nonhomologous end joining (NHEJ), the main DSB repair pathway in G1-phase cells. Antigen receptor gene assembly proceeds through DNA DSB intermediates generated in G1-phase lymphocytes by the RAG endonuclease. These DSBs activate ATM, which phosphorylates H2AX, forming γ-H2AX in flanking chromatin. γ-H2AX prevents CtIP from initiating resection of RAG DSBs. Whether there are additional proteins required to promote resection of these DNA ends is not known. KRAB-associated protein 1 (KAP-1) (TRIM28) is a transcriptional repressor that modulates chromatin structure and has been implicated in the repair of DNA DSBs in heterochromatin. Here, we show that in murine G1-phase lymphocytes, KAP-1 promotes resection of DSBs that are not protected by H2AX and its downstream effector 53BP1. In these murine cells, KAP-1 activity in DNA end resection is attenuated by a single-amino-acid change that reflects a KAP-1 polymorphism between primates and other mammalian species. These findings establish KAP-1 as a component of the machinery that can resect DNA ends in G1-phase cells and suggest that there may be species-specific features to this activity.


Assuntos
Reparo do DNA por Junção de Extremidades/genética , Proteínas de Ligação a DNA/metabolismo , Fase G1/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Linfócitos/metabolismo , Animais , Células Cultivadas , DNA/genética , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/genética , Heterocromatina/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação/genética
6.
Mol Cell ; 54(6): 1022-1033, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24837676

RESUMO

The carboxy-terminal binding protein (CtBP)-interacting protein (CtIP) is known to function in 5' strand resection during homologous recombination, similar to the budding yeast Sae2 protein, but its role in this process is unclear. Here, we characterize recombinant human CtIP and find that it exhibits 5' flap endonuclease activity on branched DNA structures, independent of the MRN complex. Phosphorylation of CtIP at known damage-dependent sites and other sites is essential for its catalytic activity, although the S327 and T847 phosphorylation sites are dispensable. A catalytic mutant of CtIP that is deficient in endonuclease activity exhibits wild-type levels of homologous recombination at restriction enzyme-generated breaks but is deficient in processing topoisomerase adducts and radiation-induced breaks in human cells, suggesting that the nuclease activity of CtIP is specifically required for the removal of DNA adducts at sites of DNA breaks.


Assuntos
Proteínas de Transporte/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/genética , Endonucleases/metabolismo , Proteínas Nucleares/metabolismo , Reparo de DNA por Recombinação/genética , Sítios de Ligação/genética , Proteínas de Transporte/genética , Catálise , Linhagem Celular , Sobrevivência Celular/genética , DNA/genética , Proteínas de Ligação a DNA/genética , Endodesoxirribonucleases , Endonucleases/genética , Humanos , Proteínas Nucleares/genética , Fosforilação/genética , Processamento de Proteína Pós-Traducional/genética , Radiação Ionizante , Recombinação Genética
7.
J Exp Med ; 210(2): 233-9, 2013 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-23382544

RESUMO

Allelic exclusion is enforced through the ability of antigen receptor chains expressed from one allele to signal feedback inhibition of V-to-(D)J recombination on the other allele. To achieve allelic exclusion by such means, only one allele can initiate V-to-(D)J recombination within the time required to signal feedback inhibition. DNA double-strand breaks (DSBs) induced by the RAG endonuclease during V(D)J recombination activate the Ataxia Telangiectasia mutated (ATM) and DNA-dependent protein kinase (DNA-PK) kinases. We demonstrate that ATM enforces Igκ allelic exclusion, and that RAG DSBs induced during Igκ recombination in primary pre-B cells signal through ATM, but not DNA-PK, to suppress initiation of additional Igκ rearrangements. ATM promotes high-density histone H2AX phosphorylation to create binding sites for MDC1, which functions with H2AX to amplify a subset of ATM-dependent signals. However, neither H2AX nor MDC1 is required for ATM to enforce Igκ allelic exclusion and suppress Igκ rearrangements. Upon activation in response to RAG Igκ cleavage, ATM signals down-regulation of Gadd45α with concomitant repression of the Gadd45α targets Rag1 and Rag2. Our data indicate that ATM kinases activated by RAG DSBs during Igκ recombination transduce transient H2AX/MDC1-independent signals that suppress initiation of further Igκ rearrangements to control Igκ allelic exclusion.


Assuntos
Proteínas de Ciclo Celular/imunologia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/imunologia , Proteínas de Ligação a DNA/metabolismo , Rearranjo Gênico de Cadeia Leve de Linfócito B , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/imunologia , Proteínas Supressoras de Tumor/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Alelos , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Sequência de Bases , Proteínas de Ciclo Celular/genética , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/genética , Histonas/deficiência , Histonas/genética , Histonas/metabolismo , Proteínas de Homeodomínio/metabolismo , Cadeias kappa de Imunoglobulina/genética , Cadeias kappa de Imunoglobulina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Modelos Biológicos , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/genética
8.
Nature ; 469(7329): 245-9, 2011 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-21160476

RESUMO

DNA double-strand breaks (DSBs) are generated by the recombination activating gene (RAG) endonuclease in all developing lymphocytes as they assemble antigen receptor genes. DNA cleavage by RAG occurs only at the G1 phase of the cell cycle and generates two hairpin-sealed DNA (coding) ends that require nucleolytic opening before their repair by classical non-homologous end-joining (NHEJ). Although there are several cellular nucleases that could perform this function, only the Artemis nuclease is able to do so efficiently. Here, in vivo, we show that in murine cells the histone protein H2AX prevents nucleases other than Artemis from processing hairpin-sealed coding ends; in the absence of H2AX, CtIP can efficiently promote the hairpin opening and resection of DNA ends generated by RAG cleavage. This CtIP-mediated resection is inhibited by γ-H2AX and by MDC-1 (mediator of DNA damage checkpoint 1), which binds to γ-H2AX in chromatin flanking DNA DSBs. Moreover, the ataxia telangiectasia mutated (ATM) kinase activates antagonistic pathways that modulate this resection. CtIP DNA end resection activity is normally limited to cells at post-replicative stages of the cell cycle, in which it is essential for homology-mediated repair. In G1-phase lymphocytes, DNA ends that are processed by CtIP are not efficiently joined by classical NHEJ and the joints that do form frequently use micro-homologies and show significant chromosomal deletions. Thus, H2AX preserves the structural integrity of broken DNA ends in G1-phase lymphocytes, thereby preventing these DNA ends from accessing repair pathways that promote genomic instability.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Fase G1 , Rearranjo Gênico do Linfócito B , Histonas/metabolismo , Linfócitos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Linhagem Celular Transformada , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endonucleases , Rearranjo Gênico do Linfócito B/genética , Instabilidade Genômica , Histonas/deficiência , Histonas/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Linfócitos/citologia , Camundongos , Proteínas Nucleares , Células Precursoras de Linfócitos B/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Recombinação Genética/genética , Especificidade por Substrato , Proteínas Supressoras de Tumor/metabolismo
9.
Blood ; 113(8): 1661-9, 2009 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-19228930

RESUMO

Men1 is a tumor suppressor gene mutated in endocrine neoplasms. Besides its endocrine role, the Men1 gene product menin interacts with the mixed lineage leukemia (MLL) protein, a histone H3 lysine 4 methyltransferase. Although menin and MLL fusion proteins cooperate to activate Homeobox (Hox) gene expression during transformation, little is known about the normal hematopoietic functions of menin. Here, we studied hematopoiesis after Men1 ablation. Menin loss modestly impaired blood neutrophil, lymphocyte, and platelet counts. Without hematopoietic stress, multilineage and myelo-erythroid bone marrow progenitor numbers were preserved, while B lymphoid progenitors were decreased. In contrast, competitive transplantation revealed a marked functional defect of long-term hematopoietic stem cells (HSC) in the absence of menin, despite normal initial homing of progenitors to the bone marrow. HoxA9 gene expression was only modestly decreased in menin-deficient HSCs. These observations reveal a novel and essential role for menin in HSC homeostasis that was most apparent during situations of hematopoietic recovery, suggesting that menin regulates molecular pathways that are essential during the adaptive HSC response to stress.


Assuntos
Hematopoese/fisiologia , Células-Tronco Hematopoéticas/citologia , Leucemia/patologia , Linfócitos/citologia , Neoplasia Endócrina Múltipla Tipo 1/patologia , Proteínas Proto-Oncogênicas/metabolismo , Animais , Transplante de Medula Óssea , Citometria de Fluxo , Regulação Leucêmica da Expressão Gênica , Células-Tronco Hematopoéticas/fisiologia , Leucemia/genética , Leucemia/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasia Endócrina Múltipla Tipo 1/genética , Neoplasia Endócrina Múltipla Tipo 1/fisiopatologia , Neutrófilos/citologia , Contagem de Plaquetas , Proteínas Proto-Oncogênicas/genética , Receptores de Retorno de Linfócitos/metabolismo
10.
Proc Natl Acad Sci U S A ; 103(4): 1018-23, 2006 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-16415155

RESUMO

Menin is the product of the tumor suppressor gene Men1 that is mutated in the inherited tumor syndrome multiple endocrine neoplasia type 1 (MEN1). Menin has been shown to interact with SET-1 domain-containing histone 3 lysine 4 (H3K4) methyltransferases including mixed lineage leukemia proteins to regulate homeobox (Hox) gene expression in vitro. Using conditional Men1 knockout mice, we have investigated the requirement for menin in hematopoiesis and myeloid transformation. Men1 excision causes reduction of Hoxa9 expression, colony formation by hematopoietic progenitors, and the peripheral white blood cell count. Menin directly activates Hoxa9 expression, at least in part, by binding to the Hoxa9 locus, facilitating methylation of H3K4, and recruiting the methylated H3K4 binding protein chd1 to the locus. Consistent with signaling downstream of menin, ectopic expression of both Hoxa9 and Meis1 rescues colony formation defects in Men1-excised bone marrow. Moreover, Men1 excision also suppresses proliferation of leukemogenic mixed lineage leukemia-AF9 fusion-protein-transformed myeloid cells and Hoxa9 expression. These studies uncover an important role for menin in both normal hematopoiesis and myeloid transformation and provide a mechanistic understanding of menin's function in these processes that may be used for therapy.


Assuntos
Regulação da Expressão Gênica , Hematopoese , Proteínas de Homeodomínio/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Animais , Western Blotting , Linhagem Celular Transformada , Proliferação de Células , Imunoprecipitação da Cromatina , DNA/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Éxons , Citometria de Fluxo , Genótipo , Histonas/química , Proteínas de Homeodomínio/metabolismo , Homozigoto , Leucemia/metabolismo , Lisina/química , Metilação , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Modelos Genéticos , Modelos Estatísticos , Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Retroviridae/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células-Tronco , Fatores de Tempo , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...