Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Environ Radioact ; 225: 106445, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33122127

RESUMO

One of the major uncertainties in dispersion-based simulations at the local scale is the representation of terrain effects. The aim of the current study is to quantify this type of uncertainty for dose-rate predictions over a homogeneous forest cover. At the Belgian reactor BR1, situated in a forested environment, ambient gamma-dose-rate data from routine Ar-41 releases are available in the first 300 m from the release point. We develop a forest parameterization that meets the site-specific needs, and integrate it in different dispersion models. Using different terrain-roughness parameterizations, we compare three types of models: a dispersion model driven by a Langevin equation, an advection-diffusion model, and a Gaussian plume model as a special case of the latter one. We find that all models are biased up to a factor of four, partly due to an uncertain source strength. The dose-rate uncertainty due to the model choice is a factor of 2.2 for a stack release and a factor of 14 for a ground release.


Assuntos
Monitoramento de Radiação , Florestas , Modelos Teóricos , Distribuição Normal , Reatores Nucleares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA