Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
1.
J Mater Chem B ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38666451

RESUMO

Inflammatory dermatoses represent a global problem with increasing prevalence and recurrence among the world population. Topical glucocorticoids (GCs) are the most commonly used anti-inflammatory drugs in dermatology due to a wide range of their therapeutic actions, which, however, have numerous local and systemic side effects. Hence, there is a growing need to create new delivery systems for GCs, ensuring the drug localization in the pathological site, thus increasing the effectiveness of therapy and lowering the risk of side effects. Here, we propose a novel topical particulate formulation for the GC clobetasol propionate (CP), based on the use of porous calcium carbonate (CaCO3) carriers in the vaterite crystalline form. The designed carriers contain a substantially higher CP amount than conventional dosage forms used in clinics (4.5% w/w vs. 0.05% w/w) and displayed a good biocompatibility and effective cellular uptake when studied in fibroblasts in vitro. Hair follicles represent an important reservoir for the GC accumulation in skin and house the targets for its action. In this study, we demonstrated successful delivery of the CP-loaded carriers (CP-CaCO3) into the hair follicles of rats in vivo using optical coherent tomography (OCT). Importantly, the OCT monitoring revealed the gradual intrafollicular degradation of the carriers within 168 h with the most abundant follicle filling occurring within the first 48 h. Biodegradability makes the proposed system especially promising when searching for new CP formulations with improved safety and release profile. Our findings evidenced the great potential of the CaCO3 carriers in improving the dermal bioavailability of this poorly water-soluble GC.

2.
J Biophotonics ; : e202300494, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453152

RESUMO

The broadband absorption coefficient spectrum of the rabbit lung presents some particular characteristics that allow the identification of the chromophores in this tissue. By performing a weighted combination of the absorption spectra of water, hemoglobin, DNA, proteins and the pigments melanin and lipofuscin, it was possible to obtain a good match to the experimental absorption spectrum of the lung. Such reconstruction provided reasonable information about the contents of the tissue components in the lung tissue, and allowed to identify a similar accumulation of melanin and lipofuscin.

3.
J Biophotonics ; : e202300466, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38318753

RESUMO

With the objective of developing new methods to acquire diagnostic information, the reconstruction of the broadband absorption coefficient spectra (µa [λ]) of healthy and chromophobe renal cell carcinoma kidney tissues was performed. By performing a weighted sum of the absorption spectra of proteins, DNA, oxygenated, and deoxygenated hemoglobin, lipids, water, melanin, and lipofuscin, it was possible to obtain a good match of the experimental µa (λ) of both kidney conditions. The weights used in those reconstructions were estimated using the least squares method, and assuming a total water content of 77% in both kidney tissues, it was possible to calculate the concentrations of the other tissue components. It has been shown that with the development of cancer, the concentrations of proteins, DNA, oxygenated hemoglobin, lipids, and lipofuscin increase, and the concentration of melanin decreases. Future studies based on minimally invasive spectral measurements will allow cancer diagnosis using the proposed approach.

4.
Neurophotonics ; 11(1): 010601, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38317779

RESUMO

The brain diseases account for 30% of all known diseases. Pharmacological treatment is hampered by the blood-brain barrier, limiting drug delivery to the central nervous system (CNS). Transcranial photobiomodulation (tPBM) is a promising technology for treating brain diseases, due to its effectiveness, non-invasiveness, and affordability. tPBM has been widely used in pre-clinical experiments and clinical trials for treating brain diseases, such as stroke and Alzheimer's disease. This review provides a comprehensive overview of tPBM. We summarize emerging trends and new discoveries in tPBM based on over one hundred references published in the past 20 years. We discuss the advantages and disadvantages of tPBM and highlight successful experimental and clinical protocols for treating various brain diseases. A better understanding of tPBM mechanisms, the development of guidelines for clinical practice, and the study of dose-dependent and personal effects hold great promise for progress in treating brain diseases.

5.
J Biophotonics ; 17(4): e202300322, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38221797

RESUMO

We studied grafted tumors obtained by subcutaneous implantation of kidney cancer cells into male white rats. Gold nanorods with a plasmon resonance of about 800 nm were injected intratumorally for photothermal heating. Experimental irradiation of tumors was carried out percutaneously using a near-infrared diode laser. Changes in the optical properties of the studied tissues in the spectral range 350-2200 nm under plasmonic photothermal therapy (PPT) were studied. Analysis of the observed changes in the absorption bands of water and hemoglobin made it possible to estimate the depth of thermal damage to the tumor. A significant decrease in absorption peaks was observed in the spectrum of the upper peripheral part and especially the tumor capsule. The obtained changes in the optical properties of tissues under laser irradiation can be used to optimize laboratory and clinical PPT procedures.


Assuntos
Terapia a Laser , Nanotubos , Neoplasias , Ratos , Animais , Masculino , Terapia Fototérmica , Ouro/uso terapêutico , Lasers Semicondutores
6.
Diagnostics (Basel) ; 14(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38248078

RESUMO

Correct classification of skin lesions is a key step in skin cancer screening, which requires high accuracy and interpretability. This paper proposes a multimodal method for differentiating various clinical forms of basal cell carcinoma and benign neoplasms that includes machine learning. This study was conducted on 37 neoplasms, including benign neoplasms and five different clinical forms of basal cell carcinoma. The proposed multimodal screening method combines diffuse reflectance spectroscopy, optical coherence tomography and high-frequency ultrasound. Using diffuse reflectance spectroscopy, the coefficients of melanin pigmentation, erythema, hemoglobin content, and the slope coefficient of diffuse reflectance spectroscopy in the wavelength range 650-800 nm were determined. Statistical texture analysis of optical coherence tomography images was used to calculate first- and second-order statistical parameters. The analysis of ultrasound images assessed the shape of the tumor according to parameters such as area, perimeter, roundness and other characteristics. Based on the calculated parameters, a machine learning algorithm was developed to differentiate the various clinical forms of basal cell carcinoma. The proposed algorithm for classifying various forms of basal cell carcinoma and benign neoplasms provided a sensitivity of 70.6 ± 17.3%, specificity of 95.9 ± 2.5%, precision of 72.6 ± 14.2%, F1 score of 71.5 ± 15.6% and mean intersection over union of 57.6 ± 20.1%. Moreover, for differentiating basal cell carcinoma and benign neoplasms without taking into account the clinical form, the method achieved a sensitivity of 89.1 ± 8.0%, specificity of 95.1 ± 0.7%, F1 score of 89.3 ± 3.4% and mean intersection over union of 82.6 ± 10.8%.

7.
RSC Adv ; 14(5): 3321-3334, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38249664

RESUMO

Photodynamic therapy (PDT) is a well-established cancer treatment method that employs light to generate reactive oxygen species (ROS) causing oxidative damage to cancer cells. Nevertheless, PDT encounters challenges due to its oxygen-dependent nature, which makes it less effective in hypoxic tumor environments. To address this issue, we have developed a novel nanocomposite known as AuNC@BBR@Ghost. This nanocomposite combines the advantageous features of erythrocyte ghost membranes, the photoresponsive properties of gold nanoclusters (AuNC) and the anticancer characteristics of Berberine (BBR) for cancer treatment. Our synthesized AuNC efficiently produce ROS, with a 25% increase in efficiency when exposed to near-infrared (NIR) irradiation. By harnessing the oxygen-carrying capacity of erythrocyte ghost cells, AuNC@BBR@Ghost demonstrates a significant improvement in ROS generation, achieving an 80% efficiency. Furthermore, the AuNC exhibit tunable emission wavelengths due to their excellent fluorescent properties. In normoxic conditions, treatment of A549 lung carcinoma cells with AuNC@BBR@Ghost followed by exposure to 808 nm NIR irradiation results in a notable increase in intracellular ROS levels, accelerating cell death. In hypoxic conditions, when A549 cells were treated with AuNC@BBR@Ghost, the erythrocyte ghost acted as an oxygen supplement due to the residual hemoglobin, alleviating hypoxia and enhancing the nanocomposite's sensitivity to PDT treatment. Thus, the AuNC@BBR@Ghost nanocomposite achieves an improved effect by combining the advantageous properties of its individual components, resulting in enhanced ROS generation and adaptability to hypoxic conditions. This innovative approach successfully overcomes PDT's limitations, making AuNC@BBR@Ghost a promising nanotheranostic agent with significant potential for advanced cancer therapy.

8.
Sci Rep ; 13(1): 21509, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057535

RESUMO

The biggest obstacle to optical imaging is light attenuation in biological tissues. Conventional clearing techniques, such as agent-based clearing, improve light penetration depth by reducing scattering, but they are hampered by drawbacks including toxicity, low efficiency, slowness, and superficial performance, which prevent them from resolving the attenuation problem on their own. Therefore, quick, safe, and effective procedures have been developed. One of them involves using standing ultrasonic waves to build light waveguides that function effectively in the tissue depth while minimizing scattering. Temporal optical clearing is another agent-free strategy that we introduced in our previous article. Whereas not deep, this technique minimizes both light absorption and scattering by pulse width variation in ultra-short pulse regime. Consequently, it can be a complementary method for ultrasonic optical clearing. In this work, we enhanced the light penetration depth in chicken breast tissue by 10 times (0.67-6.7 cm), setting a record in literature by integrating three clearing methods: agent-based, ultrasound-based, and temporal. Here, optical coherence tomography, Bear-Lambert, and fluorescence tests have been used to study the light penetration depth and optical clearing efficiency. Presented work is an essential step in development of diagnostic techniques for human body, from cells to organs.


Assuntos
Luz , Tomografia de Coerência Óptica , Humanos , Tomografia de Coerência Óptica/métodos , Ultrassonografia
9.
Diagnostics (Basel) ; 13(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37958237

RESUMO

(1) Background: The use of electronic cigarettes has become widespread in recent years. The use of e-cigarettes leads to milder pathological conditions compared to traditional cigarette smoking. Nevertheless, e-liquid vaping can cause morphological changes in lung tissue, which affects and impairs gas exchange. This work studied the changes in morphological and optical properties of lung tissue under the action of an e-liquid aerosol. To do this, we implemented the "passive smoking" model and created the specified concentration of aerosol of the glycerol/propylene glycol mixture in the chamber with the animal. (2) Methods: In ex vivo studies, the lungs of Wistar rats are placed in the e-liquid for 1 h. For in vivo studies, Wistar rats were exposed to the e-liquid vapor in an aerosol administration chamber. After that, lung tissue samples were examined ex vivo using optical coherence tomography (OCT) and spectrometry with an integrating sphere. Absorption and reduced scattering coefficients were estimated for the control and experimental groups. Histological sections were made according to the standard protocol, followed by hematoxylin and eosin staining. (3) Results: Exposure to e-liquid in ex vivo and aerosol in in vivo studies was found to result in the optical clearing of lung tissue. Histological examination of the lung samples showed areas of emphysematous expansion of the alveoli, thickening of the alveolar septa, and the phenomenon of plasma permeation, which is less pronounced in in vivo studies than for the exposure of e-liquid ex vivo. E-liquid aerosol application allows for an increased resolution and improved imaging of lung tissues using OCT. Spectral studies showed significant differences between the control group and the ex vivo group in the spectral range of water absorption. It can be associated with dehydration of lung tissue owing to the hyperosmotic properties of glycerol and propylene glycol, which are the main components of e-liquids. (4) Conclusions: A decrease in the volume of air in lung tissue and higher packing of its structure under e-liquid vaping causes a better contrast of OCT images compared to intact lung tissue.

10.
J Biophotonics ; : e202300336, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37851480

RESUMO

Ex vivo porcine lung immersed in e-liquid was investigated in-depth using confocal Raman micro-spectroscopy to assess the e-liquid influence on the lung. It was found that lung-related Raman band intensities at 1002, 1548, 1618 and 1655 cm-1 increased after first and second treatments except the surface, which was attributed to the well-known optical clearing (OC) effect due to alveoli filling with e-liquid resulting in light scattering reduction. The autofluorescence enhancement was explained by oxidative stress induced in lung during exposure to e-liquid. Moreover, e-liquid induced collagen dehydration was revealed by the I937 /I926 Raman band intensity ratio change. The effect was enhanced after the second treatment of the same lung tissue that indicates the possibility of multi-step OC treatment. We hypothesize that the nicotine-flavour-free e-liquids containing glycerol and propylene glycol could potentially be used in clinical protocols as OC agent for enhanced in-depth Raman-guided bronchoscopy.

11.
J Biophotonics ; 16(11): e202300239, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37515457

RESUMO

The rapid and accurate diagnosis of cancer is an important topic in clinical medicine. In the present work, an innovative method based on laser-induced breakdown spectroscopy (LIBS) combined with machine learning was developed to distinguish and classify different tumor cell lines. The LIBS spectra of cells were first acquired. Then the spectral pre-processing was performed as well as detailed optimization to improve the classification accuracy. After that, the convolutional neural network (CNN), support vector machine (SVM), and K-nearest neighbors were further compared for the optimized classification ability of tumor cells. Both the CNN algorithm and SVM algorithm have achieved impressive discrimination performances for tumor cells distinguishing, with an accuracy of 97.72%. The results show that the heterogeneity of elements in tumor cells plays an important role in distinguishing the cells. It also means that the LIBS technique can be used as a fast classification method for classifying tumor cells.


Assuntos
Algoritmos , Lasers , Análise Espectral/métodos , Redes Neurais de Computação , Aprendizado de Máquina , Máquina de Vetores de Suporte
12.
Cytometry A ; 103(11): 868-880, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37455600

RESUMO

Photoacoustic flow cytometry is one of the most effective approaches to detect "alien" objects in the bloodstream, including circulating tumor cells, blood clots, parasites, and emboli. However, the possibility of detecting high-amplitude signals from these objects against the background of blood depends on the parameters of the laser pulse. So, the dependencies of photoacoustic signals amplitude and number on laser pulse energy (5-150 µJ), pulse length (1, 2, 5 ns), and pulse repetition rate (2, 5, 10 kHz) for the melanoma cells were investigated. First, the PA responses of a melanoma cell suspension in vitro were measured to directly assess the efficiency of converting laser light into an acoustic signal. After it, the same dependence with the developed murine model based on constant rate melanoma cell injection into the animal blood flow was tested. Both in vivo and in vitro experiments show that signal generation efficiency increases with laser pulse energy above 15 µJ. Shorter pulses, especially 1 ns, provide more efficient signal generation as well as higher pulse rates. A higher pulse rate also provides more efficient signal generation, but also leads to overheating of the skin. The results show the limits where the photoacoustic flow cytometry system can be effectively used for the detection of circulating tumor cells in undiluted blood both for in vitro experiments and for in vivo murine models.


Assuntos
Melanoma , Células Neoplásicas Circulantes , Camundongos , Animais , Citometria de Fluxo/métodos , Células Neoplásicas Circulantes/patologia , Lasers , Melanoma/patologia , Análise Espectral
13.
J Biomed Opt ; 28(5): 055002, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37250859

RESUMO

Significance: The clinical use of optical methods for in vivo skin imaging is limited by skin strong scattering properties, which reduce image contrast and probing depth. The efficiency of optical methods can be improved by optical clearing (OC). However, for the use of OC agents (OCAs) in a clinical setting, compliance with acceptable non-toxic concentrations is required. Aim: OC of in vivo human skin, combined with physical and chemical methods to enhance skin permeability to OCAs, was performed to determine the clearing-effectiveness of biocompatible OCAs using line-field confocal optical coherence tomography (LC-OCT) imaging. Approach: Nine types of OCAs mixtures were used in association with dermabrasion and sonophoresis for OC protocol on three volunteers hand skin. From 3D images obtained every 5 min for 40 min, the intensity and contrast parameters were extracted to assess their changes during the clearing process and evaluate each OCAs mixture's clearing efficacy. Results: The LC-OCT images average intensity and contrast increased over the entire skin depth with all OCAs. The best image contrast and intensity improvement was observed using the polyethylene glycol, oleic acid, and propylene glycol mixture. Conclusions: Complex OCAs featuring reduced component concentrations that meet drug regulation-established biocompatibility requirements were developed and proved to induce significant skin tissues clearing. By allowing deeper observations and higher contrast, such OCAs in combination with physical and chemical permeation enhancers may improve LC-OCT diagnostic efficacy.


Assuntos
Pele , Tomografia de Coerência Óptica , Humanos , Tomografia de Coerência Óptica/métodos , Pele/diagnóstico por imagem , Polietilenoglicóis/química , Propilenoglicol , Imageamento Tridimensional
14.
Diagnostics (Basel) ; 13(3)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36766594

RESUMO

The method of immersion optical clearing reduces light scattering in tissues, which improves the use of optical technologies in the practice of clinicians. In this work, we studied the optical and molecular diffusion properties of cat ovarian tissues in the follicular (F-ph) and luteal (L-ph) phases under the influence of glycerol using reflectance spectroscopy in a broad wavelength range from 200 to 800 nm. It was found that the reflectance and transmittance of the ovaries are significantly lower in the range from 200 to 600 nm than for longer wavelengths from 600 to 800 nm, and the efficiency of optical clearing is much lower for the ovaries in the luteal phase compared to the follicular phase. For shorter wavelengths, the following tissue transparency windows were observed: centered at 350 nm and wide (46 ± 5) nm, centered at 500 nm and wide (25 ± 7) nm for the F-ph state and with a center of 500 nm and a width of (21 ± 6) nm for the L-ph state. Using the free diffusion model, Fick's law of molecular diffusion and the Bouguer-Beer-Lambert radiation attenuation law, the glycerol/tissue water diffusion coefficient was estimated as D = (1.9 ± 0.2)10-6 cm2/s for ovaries at F-ph state and D = (2.4 ± 0.2)10-6 cm2/s-in L-ph state, and the time of complete dehydration of ovarian samples, 0.8 mm thick, as 22.3 min in F-ph state and 17.7 min in L-ph state. The ability to determine the phase in which the ovaries are stated, follicular or luteal, is also important in cryopreservation, new reproductive technologies and ovarian implantation.

15.
Sci Rep ; 13(1): 1073, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658207

RESUMO

Adipose tissue (AT) optical properties for physiological temperatures and in vivo conditions are still insufficiently studied. The AT is composed mainly of packed cells close to spherical shape. It is a possible reason that AT demonstrates a very complicated spatial structure of reflected or transmitted light. It was shown with a cellular tissue phantom, is split into a fan of narrow tracks, originating from the insertion point and representing filament-like light distribution. The development of suitable approaches for describing light propagation in a AT is urgently needed. A mathematical model of the propagation of light through the layers of fat cells is proposed. It has been shown that the sharp local focusing of optical radiation (light localized near the shadow surface of the cells) and its cleavage by coupling whispering gallery modes depends on the optical thickness of the cell layer. The optical coherence tomography numerical simulation and experimental studies results demonstrate the importance of sharp local focusing in AT for understanding its optical properties for physiological conditions and at AT heating.


Assuntos
Adipócitos , Modelos Teóricos , Temperatura , Espalhamento de Radiação , Simulação por Computador
16.
Biomed Opt Express ; 14(1): 249-298, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36698664

RESUMO

A distinctive feature of this review is a critical analysis of methods and results of measurements of the optical properties of tissues in a wide spectral range from deep UV to terahertz waves. Much attention is paid to measurements of the refractive index of biological tissues and liquids, the knowledge of which is necessary for the effective application of many methods of optical imaging and diagnostics. The optical parameters of healthy and pathological tissues are presented, and the reasons for their differences are discussed, which is important for the discrimination of pathologies and the demarcation of their boundaries. When considering the interaction of terahertz radiation with tissues, the concept of an effective medium is discussed, and relaxation models of the effective optical properties of tissues are presented. Attention is drawn to the manifestation of the scattering properties of tissues in the THz range and the problems of measuring the optical properties of tissues in this range are discussed. In conclusion, a method for the dynamic analysis of the optical properties of tissues under optical clearing using an application of immersion agents is presented. The main mechanisms and technologies of optical clearing, as well as examples of the successful application for differentiation of healthy and pathological tissues, are analyzed.

17.
J Biophotonics ; 16(3): e202200288, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36510652

RESUMO

This article describes a sapphire cryoprobe as a promising solution to the significant problem of modern cryosurgery that is the monitoring of tissue freezing. This probe consists of a sapphire rod manufactured by the edge-defined film-fed growth technique from Al2 O3 melt and optical fibers accommodated inside the rod and connected to the source and the detector. The probe's design enables detection of spatially resolved diffuse reflected intensities of tissue optical response, which are used for the estimation of tissue freezing depth. The current type of the 12.5-mm diameter sapphire probe cooled down by the liquid nitrogen assumes a superficial cryoablation. The experimental test made by using a gelatin-intralipid tissue phantom shows the feasibility of such concept, revealing the capabilities of monitoring the freezing depth up to 10 mm by the particular instrumentation realization of the probe. This justifies a potential of sapphire-based instruments aided by optical diagnosis in modern cryosurgery.


Assuntos
Óxido de Alumínio , Criocirurgia , Congelamento , Estudos de Viabilidade , Criocirurgia/métodos
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 286: 122002, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36274538

RESUMO

A fast calculation method was used to obtain the spectral optical properties of human normal and pathological (chromophobe renal cell carcinoma) kidney tissues. Using total transmittance, total reflectance and collimated transmittance spectra acquired from ex vivo kidney samples, the spectral optical properties of both tissues, namely the absorption, the scattering and the reduced scattering coefficients, as well as the scattering anisotropy, dispersion and light penetration depth, were calculated between 200 and 1000 nm. Analysis of the mean absorption coefficient spectra of the kidney tissues showed that both contain melanin and lipofuscin, and that 83 % of the melanin in the normal kidney converts into lipofuscin in the pathological kidney.


Assuntos
Lipofuscina , Melaninas , Humanos , Espalhamento de Radiação , Anisotropia , Rim
20.
J Biophotonics ; 16(1): e202200205, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36101493

RESUMO

The recent increasing interest in the application of radiology contrasting agents to create transparency in biological tissues implies that the diffusion properties of those agents need evaluation. The comparison of those properties with the ones obtained for other optical clearing agents allows to perform an optimized agent selection to create optimized transparency in clinical applications. In this study, the evaluation and comparison of the diffusion properties of gadobutrol and glycerol in skeletal muscle was made, showing that although gadobutrol has a higher molar mass than glycerol, its low viscosity allows for a faster diffusion in the muscle. The characterization of the tissue dehydration and refractive index matching mechanisms of optical clearing was made in skeletal muscle, namely by the estimation of the diffusion coefficients for water, glycerol and gadobutrol. The estimated tortuosity values of glycerol (2.2) and of gadobutrol (1.7) showed a longer path-length for glycerol in the muscle.


Assuntos
Glicerol , Músculo Esquelético , Água , Refratometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...