Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Database (Oxford) ; 20222022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35616100

RESUMO

Despite progress in the development of standards for describing and exchanging scientific information, the lack of easy-to-use standards for mapping between different representations of the same or similar objects in different databases poses a major impediment to data integration and interoperability. Mappings often lack the metadata needed to be correctly interpreted and applied. For example, are two terms equivalent or merely related? Are they narrow or broad matches? Or are they associated in some other way? Such relationships between the mapped terms are often not documented, which leads to incorrect assumptions and makes them hard to use in scenarios that require a high degree of precision (such as diagnostics or risk prediction). Furthermore, the lack of descriptions of how mappings were done makes it hard to combine and reconcile mappings, particularly curated and automated ones. We have developed the Simple Standard for Sharing Ontological Mappings (SSSOM) which addresses these problems by: (i) Introducing a machine-readable and extensible vocabulary to describe metadata that makes imprecision, inaccuracy and incompleteness in mappings explicit. (ii) Defining an easy-to-use simple table-based format that can be integrated into existing data science pipelines without the need to parse or query ontologies, and that integrates seamlessly with Linked Data principles. (iii) Implementing open and community-driven collaborative workflows that are designed to evolve the standard continuously to address changing requirements and mapping practices. (iv) Providing reference tools and software libraries for working with the standard. In this paper, we present the SSSOM standard, describe several use cases in detail and survey some of the existing work on standardizing the exchange of mappings, with the goal of making mappings Findable, Accessible, Interoperable and Reusable (FAIR). The SSSOM specification can be found at http://w3id.org/sssom/spec. Database URL: http://w3id.org/sssom/spec.


Assuntos
Metadados , Web Semântica , Gerenciamento de Dados , Bases de Dados Factuais , Fluxo de Trabalho
2.
Stud Health Technol Inform ; 270: 1409-1410, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32570683

RESUMO

An overarching WHO-FIC Content Model will allow uniform modeling of classifications in the WHO Family of International Classifications (WHO-FIC) and promote their joint use. We provide an initial conceptualization of such a model.


Assuntos
Classificação Internacional de Doenças , Organização Mundial da Saúde
3.
NPJ Digit Med ; 2: 90, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31531395

RESUMO

The biomedical data landscape is fragmented with several isolated, heterogeneous data and knowledge sources, which use varying formats, syntaxes, schemas, and entity notations, existing on the Web. Biomedical researchers face severe logistical and technical challenges to query, integrate, analyze, and visualize data from multiple diverse sources in the context of available biomedical knowledge. Semantic Web technologies and Linked Data principles may aid toward Web-scale semantic processing and data integration in biomedicine. The biomedical research community has been one of the earliest adopters of these technologies and principles to publish data and knowledge on the Web as linked graphs and ontologies, hence creating the Life Sciences Linked Open Data (LSLOD) cloud. In this paper, we provide our perspective on some opportunities proffered by the use of LSLOD to integrate biomedical data and knowledge in three domains: (1) pharmacology, (2) cancer research, and (3) infectious diseases. We will discuss some of the major challenges that hinder the wide-spread use and consumption of LSLOD by the biomedical research community. Finally, we provide a few technical solutions and insights that can address these challenges. Eventually, LSLOD can enable the development of scalable, intelligent infrastructures that support artificial intelligence methods for augmenting human intelligence to achieve better clinical outcomes for patients, to enhance the quality of biomedical research, and to improve our understanding of living systems.

4.
Semant Web ; 9(4): 517-544, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30505251

RESUMO

The research goal of this work is to investigate modeling patterns that recur in ontologies. Such patterns may originate from certain design solutions, and they may possibly indicate emerging ontology design patterns. We describe our tree-mining method for identifying the emerging design patterns. The method works in two steps: (1) we transform the ontology axioms in a tree shape in order to find axiom patterns; and then, (2) we use association analysis to mine co-occuring axiom patterns in order to extract emerging design patterns. We conduct an experimental study on a set of 331 ontologies from the BioPortal repository. We show that recurring axiom patterns appear across all individual ontologies, as well as across the whole set. In individual ontologies, we find frequent and non-trivial patterns with and without variables. Some of the former patterns have more than 300,000 occurrences. The longest pattern without a variable discovered from the whole ontology set has size 12, and it appears in 14 ontologies. To the best of our knowledge, this is the first method for automatic discovery of emerging design patterns in ontologies. Finally, we demonstrate that we are able to automatically detect patterns, for which we have manually confirmed that they are fragments of ontology design patterns described in the literature. Since our method is not specific to particular ontologies, we conclude that we should be able to discover new, emerging design patterns for arbitrary ontology sets.

5.
Web Semant ; 49: 16-30, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29657560

RESUMO

Biomedical ontologies are large: Several ontologies in the BioPortal repository contain thousands or even hundreds of thousands of entities. The development and maintenance of such large ontologies is difficult. To support ontology authors and repository developers in their work, it is crucial to improve our understanding of how these ontologies are explored, queried, reused, and used in downstream applications by biomedical researchers. We present an exploratory empirical analysis of user activities in the BioPortal ontology repository by analyzing BioPortal interaction logs across different access modes over several years. We investigate how users of BioPortal query and search for ontologies and their classes, how they explore the ontologies, and how they reuse classes from different ontologies. Additionally, through three real-world scenarios, we not only analyze the usage of ontologies for annotation tasks but also compare it to the browsing and querying behaviors of BioPortal users. For our investigation, we use several different visualization techniques. To inspect large amounts of interaction, reuse, and real-world usage data at a glance, we make use of and extend PolygOnto, a visualization method that has been successfully used to analyze reuse of ontologies in previous work. Our results show that exploration, query, reuse, and actual usage behaviors rarely align, suggesting that different users tend to explore, query and use different parts of an ontology. Finally, we highlight and discuss differences and commonalities among users of BioPortal.

6.
Semant Web ; 8(6): 853-871, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28819351

RESUMO

Reusing ontologies and their terms is a principle and best practice that most ontology development methodologies strongly encourage. Reuse comes with the promise to support the semantic interoperability and to reduce engineering costs. In this paper, we present a descriptive study of the current extent of term reuse and overlap among biomedical ontologies. We use the corpus of biomedical ontologies stored in the BioPortal repository, and analyze different types of reuse and overlap constructs. While we find an approximate term overlap between 25-31%, the term reuse is only <9%, with most ontologies reusing fewer than 5% of their terms from a small set of popular ontologies. Clustering analysis shows that the terms reused by a common set of ontologies have >90% semantic similarity, hinting that ontology developers tend to reuse terms that are sibling or parent-child nodes. We validate this finding by analysing the logs generated from a Protégé plugin that enables developers to reuse terms from BioPortal. We find most reuse constructs were 2-level subtrees on the higher levels of the class hierarchy. We developed a Web application that visualizes reuse dependencies and overlap among ontologies, and that proposes similar terms from BioPortal for a term of interest. We also identified a set of error patterns that indicate that ontology developers did intend to reuse terms from other ontologies, but that they were using different and sometimes incorrect representations. Our results stipulate the need for semi-automated tools that augment term reuse in the ontology engineering process through personalized recommendations.

7.
J Biomed Inform ; 71: 165-177, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28583809

RESUMO

Biomedical ontologies often reuse content (i.e., classes and properties) from other ontologies. Content reuse enables a consistent representation of a domain and reusing content can save an ontology author significant time and effort. Prior studies have investigated the existence of reused terms among the ontologies in the NCBO BioPortal, but as of yet there has not been a study investigating how the ontologies in BioPortal utilize reused content in the modeling of their own content. In this study we investigate how 355 ontologies hosted in the NCBO BioPortal reuse content from other ontologies for the purposes of creating new ontology content. We identified 197 ontologies that reuse content. Among these ontologies, 108 utilize reused classes in the modeling of their own classes and 116 utilize reused properties in class restrictions. Current utilization of reuse and quality issues related to reuse are discussed.


Assuntos
Ontologias Biológicas , Software , Vocabulário Controlado , Controle de Qualidade
8.
J Biomed Inform ; 68: 20-34, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28192233

RESUMO

The International Classification of Diseases (ICD) is the de facto standard international classification for mortality reporting and for many epidemiological, clinical, and financial use cases. The next version of ICD, ICD-11, will be submitted for approval by the World Health Assembly in 2018. Unlike previous versions of ICD, where coders mostly select single codes from pre-enumerated disease and disorder codes, ICD-11 coding will allow extensive use of multiple codes to give more detailed disease descriptions. For example, "severe malignant neoplasms of left breast" may be coded using the combination of a "stem code" (e.g., code for malignant neoplasms of breast) with a variety of "extension codes" (e.g., codes for laterality and severity). The use of multiple codes (a process called post-coordination), while avoiding the pitfall of having to pre-enumerate vast number of possible disease and qualifier combinations, risks the creation of meaningless expressions that combine stem codes with inappropriate qualifiers. To prevent that from happening, "sanctioning rules" that define legal combinations are necessary. In this work, we developed a crowdsourcing method for obtaining sanctioning rules for the post-coordination of concepts in ICD-11. Our method utilized the hierarchical structures in the domain to improve the accuracy of the sanctioning rules and to lower the crowdsourcing cost. We used Bayesian networks to model crowd workers' skills, the accuracy of their responses, and our confidence in the acquired sanctioning rules. We applied reinforcement learning to develop an agent that constantly adjusted the confidence cutoffs during the crowdsourcing process to maximize the overall quality of sanctioning rules under a fixed budget. Finally, we performed formative evaluations using a skin-disease branch of the draft ICD-11 and demonstrated that the crowd-sourced sanctioning rules replicated those defined by an expert dermatologist with high precision and recall. This work demonstrated that a crowdsourcing approach could offer a reasonably efficient method for generating a first draft of sanctioning rules that subject matter experts could verify and edit, thus relieving them of the tedium and cost of formulating the initial set of rules.


Assuntos
Teorema de Bayes , Crowdsourcing , Classificação Internacional de Doenças , Humanos , Neoplasias
9.
Semant Web ISWC ; 10588: 130-138, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29637199

RESUMO

BiOnIC is a catalog of aggregated statistics of user clicks, queries, and reuse counts for access to over 200 biomedical ontologies. BiOnIC also provides anonymized sequences of classes accessed by users over a period of four years. To generate the statistics, we processed the access logs of BioPortal, a large open biomedical ontology repository. We publish the BiOnIC data using DCAT and SKOS metadata standards. The BiOnIC catalog has a wide range of applicability, which we demonstrate through its use in three different types of applications. To our knowledge, this type of interaction data stemming from a real-world, large-scale application has not been published before. We expect that the catalog will become an important resource for researchers and developers in the Semantic Web community by providing novel insights into how ontologies are explored, queried and reused. The BiOnIC catalog may ultimately assist in the more informed development of intelligent user interfaces for semantic resources through interface customization, prediction of user browsing and querying behavior, and ontology summarization. The BiOnIC catalog is available at: http://onto-apps.stanford.edu/bionic.

10.
J Intell Inf Syst ; 47(3): 469-490, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28077914

RESUMO

Collaboration platforms provide a dynamic environment where the content is subject to ongoing evolution through expert contributions. The knowledge embedded in such platforms is not static as it evolves through incremental refinements - or micro-contributions. Such refinements provide vast resources of tacit knowledge and experience. In our previous work, we proposed and evaluated a Semantic and Time-dependent Expertise Profiling (STEP) approach for capturing expertise from micro-contributions. In this paper we extend our investigation to structured micro-contributions that emerge from an ontology engineering environment, such as the one built for developing the International Classification of Diseases (ICD) revision 11. We take advantage of the semantically related nature of these structured micro-contributions to showcase two major aspects: (i) a novel semantic similarity metric, in addition to an approach for creating bottom-up baseline expertise profiles using expertise centroids; and (ii) the application of STEP in this new environment combined with the use of the same semantic similarity measure to both compare STEP against baseline profiles, as well as to investigate the coverage of these baseline profiles by STEP.

11.
Semant Web ; 6(4): 403-422, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26568745

RESUMO

The need to examine the behavior of different user groups is a fundamental requirement when building information systems. In this paper, we present Ontology-based Decentralized Search (OBDS), a novel method to model the navigation behavior of users equipped with different types of background knowledge. Ontology-based Decentralized Search combines decentralized search, an established method for navigation in social networks, and ontologies to model navigation behavior in information networks. The method uses ontologies as an explicit representation of background knowledge to inform the navigation process and guide it towards navigation targets. By using different ontologies, users equipped with different types of background knowledge can be represented. We demonstrate our method using four biomedical ontologies and their associated Wikipedia articles. We compare our simulation results with base line approaches and with results obtained from a user study. We find that our method produces click paths that have properties similar to those originating from human navigators. The results suggest that our method can be used to model human navigation behavior in systems that are based on information networks, such as Wikipedia. This paper makes the following contributions: (i) To the best of our knowledge, this is the first work to demonstrate the utility of ontologies in modeling human navigation and (ii) it yields new insights and understanding about the mechanisms of human navigation in information networks.

12.
J Data Semant ; 4(2): 117-132, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26052350

RESUMO

The development of real-world ontologies is a complex undertaking, commonly involving a group of domain experts with different expertise that work together in a collaborative setting. These ontologies are usually large scale and have complex structures. To assist in the authoring process, ontology tools are key at making the editing process as streamlined as possible. Being able to predict confidently what the users are likely to do next as they edit an ontology will enable us to focus and structure the user interface accordingly and to facilitate more efficient interaction and information discovery. In this paper, we use data mining, specifically the association rule mining, to investigate whether we are able to predict the next editing operation that a user will make based on the change history. We simulated and evaluated continuous prediction across time using sliding window model. We used the association rule mining to generate patterns from the ontology change logs in the training window and tested these patterns on logs in the adjacent testing window. We also evaluated the impact of different training and testing window sizes on the prediction accuracies. At last, we evaluated our prediction accuracies across different user groups and different ontologies. Our results indicate that we can indeed predict the next editing operation a user is likely to make. We will use the discovered editing patterns to develop a recommendation module for our editing tools, and to design user interface components that better fit with the user editing behaviors.

13.
J Biomed Semantics ; 6: 21, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25926964

RESUMO

BACKGROUND: Lately, ontologies have become a fundamental building block in the process of formalising and storing complex biomedical information. The community-driven ontology curation process, however, ignores the possibility of multiple communities building, in parallel, conceptualisations of the same domain, and thus providing slightly different perspectives on the same knowledge. The individual nature of this effort leads to the need of a mechanism to enable us to create an overarching and comprehensive overview of the different perspectives on the domain knowledge. RESULTS: We introduce an approach that enables the loose integration of knowledge emerging from diverse sources under a single coherent interoperable resource. To accurately track the original knowledge statements, we record the provenance at very granular levels. We exemplify the approach in the rare bone disorders domain by proposing the Rare Bone Disorders Ontology (RBDO). Using RBDO, researchers are able to answer queries, such as: "What phenotypes describe a particular disorder and are common to all sources?" or to understand similarities between disorders based on divergent groupings (classifications) provided by the underlying sources. AVAILABILITY: RBDO is available at http://purl.org/skeletome/rbdo. In order to support lightweight query and integration, the knowledge captured by RBDO has also been made available as a SPARQL Endpoint at http://bio-lark.org/se_skeldys.html.

14.
CEUR Workshop Proc ; 15152015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29636656

RESUMO

We investigate the current extent of term reuse and overlap among biomedical ontologies. We use the corpus of biomedical ontologies stored in the BioPortal repository, and analyze three types of reuse constructs: (a) explicit term reuse, (b) xref reuse, and (c) Concept Unique Identifier (CUI) reuse. While there is a term label similarity of approximately 14.4% of the total terms, we observed that most ontologies reuse considerably fewer than 5% of their terms from a concise set of a few core ontologies. We developed an interactive visualization to explore reuse dependencies among biomedical ontologies. Moreover, we identified a set of patterns that indicate ontology developers did intend to reuse terms from other ontologies, but they were using different and sometimes incorrect representations. Our results suggest the value of semi-automated tools that augment term reuse in the ontology engineering process through personalized recommendations.

15.
AMIA Annu Symp Proc ; 2015: 1224-33, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26958262

RESUMO

We developed a method to evaluate the extent to which the International Classification of Function, Disability, and Health (ICF) and SNOMED CT cover concepts used in the disability listing criteria of the U.S. Social Security Administration's "Blue Book." First we decomposed the criteria into their constituent concepts and relationships. We defined different types of mappings and manually mapped the recognized concepts and relationships to either ICF or SNOMED CT. We defined various metrics for measuring the coverage of each terminology, taking into account the effects of inexact matches and frequency of occurrence. We validated our method by mapping the terms in the disability criteria of Adult Listings, Chapter 12 (Mental Disorders). SNOMED CT dominates ICF in almost all the metrics that we have computed. The method is applicable for determining any terminology's coverage of eligibility criteria.


Assuntos
Pessoas com Deficiência , Systematized Nomenclature of Medicine , United States Social Security Administration , Avaliação da Deficiência , Humanos , Classificação Internacional de Doenças , Estados Unidos
16.
J Biomed Inform ; 51: 254-71, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24953242

RESUMO

Biomedical taxonomies, thesauri and ontologies in the form of the International Classification of Diseases as a taxonomy or the National Cancer Institute Thesaurus as an OWL-based ontology, play a critical role in acquiring, representing and processing information about human health. With increasing adoption and relevance, biomedical ontologies have also significantly increased in size. For example, the 11th revision of the International Classification of Diseases, which is currently under active development by the World Health Organization contains nearly 50,000 classes representing a vast variety of different diseases and causes of death. This evolution in terms of size was accompanied by an evolution in the way ontologies are engineered. Because no single individual has the expertise to develop such large-scale ontologies, ontology-engineering projects have evolved from small-scale efforts involving just a few domain experts to large-scale projects that require effective collaboration between dozens or even hundreds of experts, practitioners and other stakeholders. Understanding the way these different stakeholders collaborate will enable us to improve editing environments that support such collaborations. In this paper, we uncover how large ontology-engineering projects, such as the International Classification of Diseases in its 11th revision, unfold by analyzing usage logs of five different biomedical ontology-engineering projects of varying sizes and scopes using Markov chains. We discover intriguing interaction patterns (e.g., which properties users frequently change after specific given ones) that suggest that large collaborative ontology-engineering projects are governed by a few general principles that determine and drive development. From our analysis, we identify commonalities and differences between different projects that have implications for project managers, ontology editors, developers and contributors working on collaborative ontology-engineering projects and tools in the biomedical domain.


Assuntos
Ontologias Biológicas , Comportamento Cooperativo , Cadeias de Markov , Modelos Estatísticos , Processamento de Linguagem Natural , Reconhecimento Automatizado de Padrão/métodos , Inteligência Artificial , Simulação por Computador , Interpretação Estatística de Dados , Classificação Internacional de Doenças/classificação , Classificação Internacional de Doenças/organização & administração , Internacionalidade , Semântica
17.
Bioinformatics ; 30(16): 2384-5, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24771560

RESUMO

UNLABELLED: WebProtégé is an open-source Web application for editing OWL 2 ontologies. It contains several features to aid collaboration, including support for the discussion of issues, change notification and revision-based change tracking. WebProtégé also features a simple user interface, which is geared towards editing the kinds of class descriptions and annotations that are prevalent throughout biomedical ontologies. Moreover, it is possible to configure the user interface using views that are optimized for editing Open Biomedical Ontology (OBO) class descriptions and metadata. Some of these views are shown in the Supplementary Material and can be seen in WebProtégé itself by configuring the project as an OBO project. AVAILABILITY AND IMPLEMENTATION: WebProtégé is freely available for use on the Web at http://webprotege.stanford.edu. It is implemented in Java and JavaScript using the OWL API and the Google Web Toolkit. All major browsers are supported. For users who do not wish to host their ontologies on the Stanford servers, WebProtégé is available as a Web app that can be run locally using a Servlet container such as Tomcat. Binaries, source code and documentation are available under an open-source license at http://protegewiki.stanford.edu/wiki/WebProtege.


Assuntos
Ontologias Biológicas , Software , Comportamento Cooperativo , Internet
18.
Web Semant ; 202013 May.
Artigo em Inglês | MEDLINE | ID: mdl-24311994

RESUMO

Traditionally, evaluation methods in the field of semantic technologies have focused on the end result of ontology engineering efforts, mainly, on evaluating ontologies and their corresponding qualities and characteristics. This focus has led to the development of a whole arsenal of ontology-evaluation techniques that investigate the quality of ontologies as a product. In this paper, we aim to shed light on the process of ontology engineering construction by introducing and applying a set of measures to analyze hidden social dynamics. We argue that especially for ontologies which are constructed collaboratively, understanding the social processes that have led to its construction is critical not only in understanding but consequently also in evaluating the ontology. With the work presented in this paper, we aim to expose the texture of collaborative ontology engineering processes that is otherwise left invisible. Using historical change-log data, we unveil qualitative differences and commonalities between different collaborative ontology engineering projects. Explaining and understanding these differences will help us to better comprehend the role and importance of social factors in collaborative ontology engineering projects. We hope that our analysis will spur a new line of evaluation techniques that view ontologies not as the static result of deliberations among domain experts, but as a dynamic, collaborative and iterative process that needs to be understood, evaluated and managed in itself. We believe that advances in this direction would help our community to expand the existing arsenal of ontology evaluation techniques towards more holistic approaches.

19.
Semant Web ; 4(1): 89-99, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23807872

RESUMO

In this paper, we present WebProtégé-a lightweight ontology editor and knowledge acquisition tool for the Web. With the wide adoption of Web 2.0 platforms and the gradual adoption of ontologies and Semantic Web technologies in the real world, we need ontology-development tools that are better suited for the novel ways of interacting, constructing and consuming knowledge. Users today take Web-based content creation and online collaboration for granted. WebProtégé integrates these features as part of the ontology development process itself. We tried to lower the entry barrier to ontology development by providing a tool that is accessible from any Web browser, has extensive support for collaboration, and a highly customizable and pluggable user interface that can be adapted to any level of user expertise. The declarative user interface enabled us to create custom knowledge-acquisition forms tailored for domain experts. We built WebProtégé using the existing Protégé infrastructure, which supports collaboration on the back end side, and the Google Web Toolkit for the front end. The generic and extensible infrastructure allowed us to easily deploy WebProtégé in production settings for several projects. We present the main features of WebProtégé and its architecture and describe briefly some of its uses for real-world projects. WebProtégé is free and open source. An online demo is available at http://webprotege.stanford.edu.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...