Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Kidney Int ; 105(4): 744-758, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37995908

RESUMO

Podocin is a key membrane scaffolding protein of the kidney podocyte essential for intact glomerular filtration. Mutations in NPHS2, the podocin-encoding gene, represent the commonest form of inherited nephrotic syndrome (NS), with early, intractable kidney failure. The most frequent podocin gene mutation in European children is R138Q, causing retention of the misfolded protein in the endoplasmic reticulum. Here, we provide evidence that podocin R138Q (but not wild-type podocin) complexes with the intermediate filament protein keratin 8 (K8) thereby preventing its correct trafficking to the plasma membrane. We have also identified a small molecule (c407), a compound that corrects the Cystic Fibrosis Transmembrane Conductance Regulator protein defect, that interrupts this complex and rescues mutant protein mistrafficking. This results in both the correct localization of podocin at the plasma membrane and functional rescue in both human patient R138Q mutant podocyte cell lines, and in a mouse inducible knock-in model of the R138Q mutation. Importantly, complete rescue of proteinuria and histological changes was seen when c407 was administered both via osmotic minipumps or delivered orally prior to induction of disease or crucially via osmotic minipump two weeks after disease induction. Thus, our data constitute a therapeutic option for patients with NS bearing a podocin mutation, with implications for other misfolding protein disorders. Further studies are necessary to confirm our findings.


Assuntos
Síndrome Nefrótica , Animais , Criança , Humanos , Camundongos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Queratina-8/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/genética , Mutação , Síndrome Nefrótica/tratamento farmacológico , Síndrome Nefrótica/genética , Síndrome Nefrótica/patologia
2.
Sci Transl Med ; 15(708): eabc8226, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37556557

RESUMO

Gene therapy for kidney diseases has proven challenging. Adeno-associated virus (AAV) is used as a vector for gene therapy targeting other organs, with particular success demonstrated in monogenic diseases. We aimed to establish gene therapy for the kidney by targeting a monogenic disease of the kidney podocyte. The most common cause of childhood genetic nephrotic syndrome is mutations in the podocyte gene NPHS2, encoding podocin. We used AAV-based gene therapy to rescue this genetic defect in human and mouse models of disease. In vitro transduction studies identified the AAV-LK03 serotype as a highly efficient transducer of human podocytes. AAV-LK03-mediated transduction of podocin in mutant human podocytes resulted in functional rescue in vitro, and AAV 2/9-mediated gene transfer in both the inducible podocin knockout and knock-in mouse models resulted in successful amelioration of kidney disease. A prophylactic approach of AAV 2/9 gene transfer before induction of disease in conditional knockout mice demonstrated improvements in albuminuria, plasma creatinine, plasma urea, plasma cholesterol, histological changes, and long-term survival. A therapeutic approach of AAV 2/9 gene transfer 2 weeks after disease induction in proteinuric conditional knock-in mice demonstrated improvement in urinary albuminuria at days 42 and 56 after disease induction, with corresponding improvements in plasma albumin. Therefore, we have demonstrated successful AAV-mediated gene rescue in a monogenic renal disease and established the podocyte as a tractable target for gene therapy approaches.


Assuntos
Nefropatias , Síndrome Nefrótica , Camundongos , Humanos , Animais , Síndrome Nefrótica/genética , Síndrome Nefrótica/terapia , Dependovirus/genética , Albuminúria , Modelos Genéticos , Terapia Genética/métodos , Modelos Animais de Doenças , Camundongos Knockout , Vetores Genéticos
3.
Commun Biol ; 4(1): 1351, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34857869

RESUMO

The glomerulus is the filtration unit of the kidney. Injury to any component of this specialised structure leads to impaired filtration and eventually fibrosis and chronic kidney disease. Current two and three dimensional (2D and 3D) models that attempt to recreate structure and interplay between glomerular cells are imperfect. Most 2D models are simplistic and unrepresentative, and 3D organoid approaches are currently difficult to reproduce at scale and do not fit well with current industrial drug-screening approaches. Here we report a rapidly generated and highly reproducible 3D co-culture spheroid model (GlomSpheres), better demonstrating the specialised physical and molecular structure of a glomerulus. Co-cultured using a magnetic spheroid formation approach, conditionally immortalised (CI) human podocytes and glomerular endothelial cells (GEnCs) deposited mature, organized isoforms of collagen IV and Laminin. We demonstrate a dramatic upregulation of key podocyte (podocin, nephrin and podocalyxin) and GEnC (pecam-1) markers. Electron microscopy revealed podocyte foot process interdigitation and endothelial vessel formation. Incubation with pro-fibrotic agents (TGF-ß1, Adriamycin) induced extracellular matrix (ECM) dysregulation and podocyte loss, which were attenuated by the anti-fibrotic agent Nintedanib. Incubation with plasma from patients with kidney disease induced acute podocyte loss and ECM dysregulation relative to patient matched remission plasma, and Nintedanib reduced podocyte loss. Finally, we developed a rapid imaging approach to demonstrate the model's usefulness in higher throughput pharmaceutical screening. GlomSpheres therefore represent a robust, scalable, replacement for 2D in vitro glomerular disease models.


Assuntos
Técnicas de Cocultura/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Glomérulos Renais/fisiologia , Esferoides Celulares/fisiologia , Células Cultivadas , Células Endoteliais/fisiologia , Humanos , Podócitos/fisiologia
4.
Clin Kidney J ; 14(3): 780-788, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33777361

RESUMO

Acute kidney injury (AKI) has gained significant attention following patient safety alerts about the increased risk of harm to patients, including increased mortality and hospitalization. Common causes of AKI include hypovolaemia, nephrotoxic medications, ischaemia and acute glomerulonephritis, although in reality it may be undetermined or multifactorial. A period of inflammation either as a contributor to the kidney injury or resulting from the injury is almost universally seen. This article was compiled following a workshop exploring the interplay between injury and inflammation. AKI is characterized by some degree of renal cell death through either apoptosis or necrosis, together with a strong inflammatory response. Studies interrogating the resolution of renal inflammation identify a whole range of molecules that are upregulated and confirm that the kidneys are able to intrinsically regenerate after an episode of AKI, provided the threshold of damage is not too high. Kidneys are unable to generate new nephrons, and dysfunctional or repeated episodes will lead to further nephron loss that is ultimately associated with the development of renal fibrosis and chronic kidney disease (CKD). The AKI to CKD transition is a complex process mainly facilitated by maladaptive repair mechanisms. Early biomarkers mapping out this process would allow a personalized approach to identifying patients with AKI who are at high risk of developing fibrosis and subsequent CKD. This review article highlights this process and explains how laboratory models of renal inflammation and injury assist with understanding the underlying disease process and allow interrogation of medications aimed at targeting the mechanistic interplay.

5.
Adv Healthc Mater ; 8(17): e1900698, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31359632

RESUMO

3D scaffolds provide cells with a spatial environment that more closely resembles that of in vivo tissue, when compared to 2D culture on a plastic substrate. However, many scaffolding materials commonly used in tissue engineering tend to exhibit anisotropic morphologies that exhibit a narrow range of fiber diameters and pore sizes, which do not recapitulate extracellular matrices. In this study, a fibrin hydrogel is formed within the interstitial spaces of an electrospun poly(glycolic) acid (PGA) monolith to generate a composite, bimodal scaffold for the coculture of kidney glomerular cell lines. This new scaffold exhibits multiple fiber morphologies, containing both PGA microfibers (14.5 ± 2 µm) and fibrin gel nanofibers (0.14 ± 0.09 µm), which increase the compressive Young's modulus beyond that of either of the constituents. The composite structure provides an enhanced 3D environment that increases proliferation and adhesion of immortalized human podocytes and glomerular endothelial cells. Moreover, the micro/nanoscale fibrous morphology promotes motility and reorganization of the glomerular cells into glomerulus-like structures, resulting in the deposition of organized collagen IV; the primary component of the glomerular basement membrane (GBM).


Assuntos
Matriz Extracelular/metabolismo , Hidrogéis/química , Glomérulos Renais/citologia , Alicerces Teciduais/química , Adesão Celular , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Técnicas de Cocultura , Colágeno Tipo IV/metabolismo , Células Endoteliais/ultraestrutura , Humanos , Imageamento Tridimensional , Podócitos/ultraestrutura , Temperatura
6.
Acta Biomater ; 78: 111-122, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30099199

RESUMO

Recreating tissue-specific microenvironments of the extracellular matrix (ECM) in vitro is of broad interest for the fields of tissue engineering and organ-on-a-chip. Here, we present biofunctional ECM protein fibres and suspended membranes, with tuneable biochemical, mechanical and topographical properties. This soft and entirely biologic membrane scaffold, formed by micro-nano-fibres using low voltage electrospinning, displays three unique characteristics for potential cell culture applications: high-content of key ECM proteins, single-layered mesh membrane, and flexibility for in situ integration into a range of device setups. Extracellular matrix (ECM) powder derived from urinary bladder, was used to fabricate the ECM-laden fibres and membranes. The highest ECM concentration in the dry protein fibre was 50 wt%, with the rest consisting of gelatin. Key ECM proteins, including collagen IV, laminin, and fibronectin, were shown to be preserved post the biofabrication process. The single fibre tensile Young's modulus can be tuned for over two orders of magnitude between ∼600 kPa and 50 MPa depending on the ECM content. Combining the fibre mesh printing with 3D printed or microfabricated structures, culture devices were constructed for endothelial layer formation, and a trans-membrane co-culture formed by glomerular cell types of podocytes and glomerular endothelial cells, demonstrating feasibility of the membrane culture. Our cell culture observation points to the importance of membrane mechanical property and re-modelling ability as a factor for soft membrane-based cell cultures. The ECM-laden fibres and membranes presented here would see potential applications in in vitro assays, and tailoring structure and biological functions of tissue engineering scaffolds. STATEMENT OF SIGNIFICANCE: Recreating tissue-specific microenvironments of the extracellular matrix (ECM) is of broad interest for the fields of tissue engineering and organ-on-a-chip. Both the biochemical and biophysical signatures of the engineered ECM interplay to affect cell response. Currently, there are limited biomaterials processing methods which allow to design ECM membrane properties flexibly and rapidly. Solvents and additives used in many existing processes also induced unwanted ECM protein degradation and toxic residues. This paper presents a solution fibre spinning technique, where careful selection of the solution combination led to well-preserved ECM proteins with tuneable composition. This technique also provides a highly versatile approach to fabricate ECM fibres and membranes, leading to designable fibre Young's modulus for over two orders of magnitude.


Assuntos
Matriz Extracelular/metabolismo , Nanofibras/química , Animais , Células Cultivadas , Módulo de Elasticidade , Elementos Químicos , Humanos , Membranas , Podócitos/citologia , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier , Estresse Mecânico , Suínos , Resistência à Tração , Engenharia Tecidual
7.
Biochem J ; 441(2): 579-90, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21955321

RESUMO

Aß42 [amyloid-ß peptide-(1-42)] plays a central role in Alzheimer's disease and is known to have a detrimental effect on neuronal cell function and survival when assembled into an oligomeric form. In the present study we show that administration of freshly prepared Aß42 oligomers to a neuroblastoma (SH-SY5Y) cell line results in a reduction in survival, and that Aß42 enters the cells prior to cell death. Immunoconfocal and immunogold electron microscopy reveal the path of the Aß42 with time through the endosomal system and shows that it accumulates in lysosomes. A 24 h incubation with Aß results in cells that have damaged lysosomes showing signs of enzyme leakage, accumulate autophagic vacuoles and exhibit severely disrupted nuclei. Endogenous Aß is evident in the cells and the results of the present study suggest that the addition of Aß oligomers disrupts a crucial balance in Aß conformation and concentration inside neuronal cells, resulting in catastrophic effects on cellular function and, ultimately, in cell death.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Autofagia/fisiologia , Neuroblastoma/patologia , Fragmentos de Peptídeos/farmacologia , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Catepsina D/metabolismo , Linhagem Celular Tumoral , Clatrina/metabolismo , Hipocampo/metabolismo , Humanos , Lisossomos/patologia , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Neuroblastoma/metabolismo , Fragmentos de Peptídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...