Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Adv Sci (Weinh) ; : e2309217, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38476051

RESUMO

Pathogenic huntingtin exon-1 protein (httex1 ), characterized by an expanded polyglutamine tract located between the N-terminal amphiphilic region and a C-terminal polyproline-rich domain, forms fibrils that accumulate in neuronal inclusion bodies, and is associated with a fatal, autosomal dominant neurodegenerative condition known as Huntington's disease. Here a complete kinetic model is described for aggregation/fibril formation of a httex1 construct with a 35-residue polyglutamine repeat, httex1 Q35 . Using exchange NMR spectroscopy, it is previously shown that the reversible formation of a sparsely-populated tetramer of the N-terminal amphiphilic domain of httex1 Q35 , comprising a D2 symmetric four-helix bundle, occurs on the microsecond time-scale and is a prerequisite for subsequent nucleation and fibril formation on a time scale that is many orders of magnitude slower (hours). Here a unified kinetic model of httex1 Q35 aggregation is developed in which fast, reversible tetramerization is directly linked to slow irreversible fibril formation via conversion of pre-equilibrated tetrameric species to "active", chain elongation-capable nuclei by conformational re-arrangement with a finite, monomer-independent rate. The unified model permits global quantitative analysis of reversible tetramerization and irreversible fibril formation from a time series of 1 H-15 N correlation spectra recorded during the course of httex1 Q35 aggregation.

2.
J Magn Reson ; 357: 107584, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37939502

RESUMO

An NMR experiment is designed for accurate and robust measurement of transverse relaxation rates of degenerate 1H transitions in selectively 13CH3-labeled, deuterated small proteins. The measurement is based on the use of acute (<90°) angle 1H radio-frequency pulses and relies on selection of the slow- and fast-relaxing components of methyl magnetization following the relaxation period in separate experiments. The R2 decay series recorded with selection of the fast-relaxing components serves as a useful complement to the R2 series acquired with selection of the slow-relaxing part, and permits the extension of the range of relative contributions of the fast- and slow-relaxing parts to apparent signal decay. The approach is experimentally verified on 13CH3 methyl groups of the ILV-{13CH3}-labeled protein ubiquitin at 10 °C and 25 °C. The obtained methyl 1H relaxation rates are in remarkably good agreement with the values obtained from well-established NMR techniques.


Assuntos
Proteínas , Ubiquitina , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Ubiquitina/química , Espectroscopia de Ressonância Magnética/métodos
3.
Proc Natl Acad Sci U S A ; 120(21): e2305823120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37186848

RESUMO

The chaperone Hsp104, a member of the Hsp100/Clp family of translocases, prevents fibril formation of a variety of amyloidogenic peptides in a paradoxically substoichiometric manner. To understand the mechanism whereby Hsp104 inhibits fibril formation, we probed the interaction of Hsp104 with the Alzheimer's amyloid-ß42 (Aß42) peptide using a variety of biophysical techniques. Hsp104 is highly effective at suppressing the formation of Thioflavin T (ThT) reactive mature fibrils that are readily observed by atomic force (AFM) and electron (EM) microscopies. Quantitative kinetic analysis and global fitting was performed on serially recorded 1H-15N correlation spectra to monitor the disappearance of Aß42 monomers during the course of aggregation over a wide range of Hsp104 concentrations. Under the conditions employed (50 µM Aß42 at 20 °C), Aß42 aggregation occurs by a branching mechanism: an irreversible on-pathway leading to mature fibrils that entails primary and secondary nucleation and saturating elongation; and a reversible off-pathway to form nonfibrillar oligomers, unreactive to ThT and too large to be observed directly by NMR, but too small to be visualized by AFM or EM. Hsp104 binds reversibly with nanomolar affinity to sparsely populated Aß42 nuclei present in nanomolar concentrations, generated by primary and secondary nucleation, thereby completely inhibiting on-pathway fibril formation at substoichiometric ratios of Hsp104 to Aß42 monomers. Tight binding to sparsely populated nuclei likely constitutes a general mechanism for substoichiometric inhibition of fibrillization by a variety of chaperones. Hsp104 also impacts off-pathway oligomerization but to a much smaller degree initially reducing and then increasing the rate of off-pathway oligomerization.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Cinética , Peptídeos beta-Amiloides/metabolismo , Amiloide/química , Dobramento de Proteína , Chaperonas Moleculares/metabolismo , Fragmentos de Peptídeos/metabolismo , Doença de Alzheimer/metabolismo
4.
J Biomol NMR ; 77(3): 83-91, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37095392

RESUMO

A methyl Transverse Relaxation Optimized Spectroscopy (methyl-TROSY) based, multiple quantum (MQ) 13C Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion NMR experiment is described. The experiment is derived from the previously developed MQ 13C-1H CPMG scheme (Korzhnev in J Am Chem Soc 126: 3964-73, 2004) supplemented with a CPMG train of refocusing 1H pulses applied with constant frequency and synchronized with the 13C CPMG pulse train. The optimal 1H 'decoupling' scheme that minimizes the amount of fast-relaxing methyl MQ magnetization present during CPMG intervals, makes use of an XY-4 phase cycling of the refocusing composite 1H pulses. For small-to-medium sized proteins, the MQ 13C CPMG experiment has the advantage over its single quantum (SQ) 13C counterpart of significantly reducing intrinsic, exchange-free relaxation rates of methyl coherences. For high molecular weight proteins, the MQ 13C CPMG experiment eliminates complications in the interpretation of MQ 13C-1H CPMG relaxation dispersion profiles arising from contributions to exchange from differences in methyl 1H chemical shifts between ground and excited states. The MQ 13C CPMG experiment is tested on two protein systems: (1) a triple mutant of the Fyn SH3 domain that interconverts slowly on the chemical shift time scale between the major folded state and an excited state folding intermediate; and (2) the 82-kDa enzyme Malate Synthase G (MSG), where chemical exchange at individual Ile δ1 methyl positions occurs on a much faster time-scale.


Assuntos
Imageamento por Ressonância Magnética , Proteínas , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Espectroscopia de Ressonância Magnética
5.
J Biol Chem ; 299(4): 103037, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36806683

RESUMO

The bacterial MinE and MinD division regulatory proteins form a standing wave enabling MinC, which binds MinD, to inhibit FtsZ polymerization everywhere except at the midcell, thereby assuring correct positioning of the cytokinetic septum and even distribution of contents to daughter cells. The MinE dimer undergoes major structural rearrangements between a resting six-stranded state present in the cytoplasm, a membrane-bound state, and a four-stranded active state bound to MinD on the membrane, but it is unclear which MinE motifs interact with the membrane in these different states. Using NMR, we probe the structure and global dynamics of MinE bound to disc-shaped lipid bicelles. In the bicelle-bound state, helix α1 no longer sits on top of the six-stranded ß-sheet, losing any contact with the protein core, but interacts directly with the bicelle surface; the structure of the protein core remains unperturbed and also interacts with the bicelle surface via helix α2. Binding may involve a previously identified excited state of free MinE in which helix α1 is disordered, thereby allowing it to target the membrane surface. Helix α1 and the protein core undergo nanosecond rigid body motions of differing amplitudes in the plane of the bicelle surface. Global dynamics on the sub-millisecond time scale between a ground state and a sparsely populated excited state are also observed and may represent a very early intermediate on the transition path between the resting six-stranded and active four-stranded conformations. In summary, our results provide insights into MinE structural rearrangements important during bacterial cell division.


Assuntos
Bactérias , Proteínas de Bactérias , Proteínas de Ciclo Celular , Lipídeos , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Espectroscopia de Ressonância Magnética , Bactérias/citologia , Divisão Celular
6.
J Phys Chem Lett ; 13(48): 11271-11279, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36449372

RESUMO

Degenerate spin-systems consisting of magnetically equivalent nuclear spins, such as a 1H3 spin-system in selectively 13CH3-labeled proteins, present considerable challenges for the design of Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion NMR experiments to characterize chemical exchange on the micro-to-millisecond time-scale. Several approaches have been previously proposed for the elimination of deleterious artifacts observed in methyl 1H CPMG relaxation dispersion profiles obtained for (13C)1H3 groups. We describe an alternative, experimentally simple solution and design a "steady-state" methyl 1H CPMG scheme, where 90° or acute-angle (<90°) 1H radiofrequency pulses are applied after each CPMG echo in-phase with methyl 1H magnetization, resulting in the establishment of a "steady-state" for effective rates of magnetization decay. A simple computational procedure for quantitative analysis of the "steady-state" CPMG relaxation dispersion profiles is developed. The "steady-state" CPMG methodology is applied to two protein systems where exchange between major and minor species occurs in different regimes on the chemical shift time-scale.


Assuntos
Espectroscopia de Ressonância Magnética
7.
Proc Natl Acad Sci U S A ; 119(29): e2207690119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858329

RESUMO

The N-terminal region of the huntingtin protein, encoded by exon-1 (httex1) and containing an expanded polyglutamine tract, forms fibrils that accumulate in neuronal inclusion bodies, resulting in Huntington's disease. We previously showed that reversible formation of a sparsely populated tetramer of the N-terminal amphiphilic domain, comprising a dimer of dimers in a four-helix bundle configuration, occurs on the microsecond timescale and is an essential prerequisite for subsequent nucleation and fibril formation that takes place orders of magnitude slower on a timescale of hours. For pathogenic httex1, such as httex1Q35 with 35 glutamines, NMR signals decay too rapidly to permit measurement of time-intensive exchange-based experiments. Here, we show that quantitative analysis of both the kinetics and mechanism of prenucleation tetramerization and aggregation can be obtained simultaneously from a series of 1H-15N band-selective optimized flip-angle short-transient heteronuclear multiple quantum coherence (SOFAST-HMQC) correlation spectra. The equilibria and kinetics of tetramerization are derived from the time dependence of the 15N chemical shifts and 1H-15N cross-peak volume/intensity ratios, while the kinetics of irreversible fibril formation are afforded by the decay curves of 1H-15N cross-peak intensities and volumes. Analysis of data on httex1Q35 over a series of concentrations ranging from 200 to 750 µM and containing variable (7 to 20%) amounts of the Met7O sulfoxide species, which does not tetramerize, shows that aggregation of native httex1Q35 proceeds via fourth-order primary nucleation, consistent with the critical role of prenucleation tetramerization, coupled with first-order secondary nucleation. The Met7O sulfoxide species does not nucleate but is still incorporated into fibrils by elongation.


Assuntos
Proteína Huntingtina , Multimerização Proteica , Éxons , Humanos , Proteína Huntingtina/química , Proteína Huntingtina/genética , Cinética , Domínios Proteicos , Sulfóxidos/química
8.
J Phys Chem B ; 126(30): 5646-5654, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35877206

RESUMO

The global motions of ubiquitin, a model protein, on the surface of anisotropically tumbling 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG):1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) bicelles are described. The shapes of POPG:DHPC bicelles prepared with high molar ratios q of POPG to DHPC can be approximated by prolate ellipsoids, with the ratio of ellipsoid dimensions and dimensions themselves increasing with higher values of q. Adaptation of the nuclear magnetic resonance (NMR) relaxation-based approach that we previously developed for interactions of ubiquitin with spherical POPG liposomes (Ceccon, A. J. Am. Chem. Soc. 2016, 138, 5789-5792) allowed us to quantitatively analyze the variation in lifetime line broadening of NMR signals (ΔR2) measured for ubiquitin in the presence of q = 2 POPG:DHPC bicelles and the associated transverse spin relaxation rates (R2,B) of bicelle-bound ubiquitin. Ubiquitin, transiently bound to POPG:DHPC bicelles, undergoes internal rotation about an axis orthogonal to the surface of the bicelle and perpendicular to the principal axis of its rotational diffusion tensor on the low microsecond time scale (∼3 µs), while the rotation axis itself wobbles in a cone on a submicrosecond time scale (≤ 500 ns).


Assuntos
Lipossomos , Nanopartículas , Bicamadas Lipídicas/química , Espectroscopia de Ressonância Magnética/métodos , Ubiquitinas
9.
Prog Nucl Magn Reson Spectrosc ; 128: 1-24, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35282867

RESUMO

A survey, primarily based on work in the authors' laboratory during the last 10 years, is provided of recent developments in NMR studies of exchange processes involving protein-ligand and protein-protein interactions. We start with a brief overview of the theoretical background of Dark state Exchange Saturation Transfer (DEST) and lifetime line-broadening (ΔR2) NMR methodology. Some limitations of the DEST/ΔR2 methodology in applications to molecular systems with intermediate molecular weights are discussed, along with the means of overcoming these limitations with the help of closely related exchange NMR techniques, such as the measurements of Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion, exchange-induced chemical shifts or rapidly-relaxing components of relaxation decays. Some theoretical underpinnings of the quantitative description of global dynamics of proteins on the surface of very high molecular weight particles (nanoparticles) are discussed. Subsequently, several applications of DEST/ΔR2 methodology are described from a methodological perspective with an emphasis on providing examples of how kinetic and relaxation parameters for exchanging systems can be reliably extracted from NMR data for each particular model of exchange. Among exchanging systems that are not associated with high molecular weight species, we describe several exchange NMR-based studies that focus on kinetic modelling of transient pre-nucleation oligomerization of huntingtin peptides that precedes aggregation and fibril formation.


Assuntos
Imageamento por Ressonância Magnética , Proteínas , Cinética , Ligantes , Espectroscopia de Ressonância Magnética/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química
10.
J Am Chem Soc ; 143(25): 9672-9681, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34137596

RESUMO

Huntingtin polypeptides (httex1), encoded by exon 1 of the htt gene and containing an expanded polyglutamine tract, form fibrils that accumulate within neuronal inclusion bodies, resulting in the fatal neurodegenerative condition known as Huntington's disease. Httex1 comprises three regions: a 16-residue N-terminal amphiphilic domain (NT), a polyglutamine tract of variable length (Qn), and a polyproline-rich domain containing two polyproline tracts. The NT region of httex1 undergoes prenucleation transient oligomerization on the sub-millisecond time scale, resulting in a productive tetramer that promotes self-association and nucleation of the polyglutamine tracts. Here we show that binding of Fyn SH3, a small intracellular proline-binding domain, to the first polyproline tract of httex1Q35 inhibits fibril formation by both NMR and a thioflavin T fluorescence assay. The interaction of Fyn SH3 with httex1Q7 was investigated using NMR experiments designed to probe kinetics and equilibria at atomic resolution, including relaxation dispersion, and concentration-dependent exchange-induced chemical shifts and transverse relaxation in the rotating frame. Sub-millisecond exchange between four species is demonstrated: two major states comprising free (P) and SH3-bound (PL) monomeric httex1Q7, and two sparsely populated dimers in which either both subunits (P2L2) or only a single subunit (P2L) is bound to SH3. Binding of SH3 increases the helical propensity of the NT domain, resulting in a 25-fold stabilization of the P2L2 dimer relative to the unliganded P2 dimer. The P2L2 dimer, in contrast to P2, does not undergo any detectable oligomerization to a tetramer, thereby explaining the allosteric inhibition of httex1 fibril formation by Fyn SH3.


Assuntos
Proteína Huntingtina/metabolismo , Multimerização Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Animais , Galinhas , Humanos , Proteína Huntingtina/química , Simulação de Acoplamento Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Proteínas Proto-Oncogênicas c-fyn/química
11.
J Phys Chem B ; 125(13): 3343-3352, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33769060

RESUMO

The dynamics of methyl-bearing side chains in proteins were probed by 13C relaxation measurements of a number of 13C magnetization modes in selectively 13CH3-labeled methyl groups of proteins. We first show how 13C magnetization modes in a 13CH3 spin-system can be isolated using acute-angle 1H radio-frequency pulses. The parameters of methyl-axis dynamics, a measure of methyl-axis ordering (Saxis2) and the correlation time of fast local methyl-axis motions (τf), derived from 13C relaxation in 13CH3 groups are compared with their counterparts obtained from 13C relaxation in 13CHD2 methyl isotopomers. We show that in high-molecular-weight proteins, excellent correlations are obtained between the [13CHD2]-derived Saxis2 values and those extracted from relaxation of the 13C magnetization of the I = 1/2 manifold in 13CH3 methyls. In smaller proteins, a certain degree of anticorrelation is observed between the Saxis2 and τf values obtained from 13C relaxation of the I = 1/2 manifold magnetization in 13CH3 methyls. These parameters can be partially decorrelated by inclusion in the analysis of relaxation data of the I = 3/2 manifold 13C magnetization.


Assuntos
Imageamento por Ressonância Magnética , Proteínas , Espectroscopia de Ressonância Magnética , Ressonância Magnética Nuclear Biomolecular
12.
Proc Natl Acad Sci U S A ; 117(48): 30441-30450, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33199640

RESUMO

Chaperone oligomerization is often a key aspect of their function. Irrespective of whether chaperone oligomers act as reservoirs for active monomers or exhibit a chaperoning function themselves, understanding the mechanism of oligomerization will further our understanding of how chaperones maintain the proteome. Here, we focus on the class-II Hsp40, human DNAJB6b, a highly efficient inhibitor of protein self-assembly in vivo and in vitro that forms functional oligomers. Using single-quantum methyl-based relaxation dispersion NMR methods we identify critical residues for DNAJB6b oligomerization in its C-terminal domain (CTD). Detailed solution NMR studies on the structure of the CTD showed that a serine/threonine-rich stretch causes a backbone twist in the N-terminal ß strand, stabilizing the monomeric form. Quantitative analysis of an array of NMR relaxation-based experiments (including Carr-Purcell-Meiboom-Gill relaxation dispersion, off-resonance R1ρ profiles, lifetime line broadening, and exchange-induced shifts) on the CTD of both wild type and a point mutant (T142A) within the S/T region of the first ß strand delineates the kinetics of the interconversion between the major twisted-monomeric conformation and a more regular ß strand configuration in an excited-state dimer, as well as exchange of both monomer and dimer species with high-molecular-weight oligomers. These data provide insights into the molecular origins of DNAJB6b oligomerization. Further, the results reported here have implications for the design of ß sheet proteins with tunable self-assembling properties and pave the way to an atomic-level understanding of amyloid inhibition.


Assuntos
Motivos de Aminoácidos , Proteínas de Choque Térmico HSP40/química , Modelos Moleculares , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Sequência de Aminoácidos , Proteínas de Choque Térmico HSP40/metabolismo , Cinética , Ligação Proteica , Conformação Proteica
13.
J Biomol NMR ; 74(12): 673-680, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33006092

RESUMO

Optimized selection of the slow-relaxing components of single-quantum 13C magnetization in 13CH3 methyl groups of proteins using acute (< 90°) angle 1H radio-frequency pulses, is described. The optimal selection scheme is more relaxation-tolerant and provides sensitivity gains in comparison to the experiment where the undesired (fast-relaxing) components of 13C magnetization are simply 'filtered-out' and only 90° 1H pulses are employed for magnetization transfer to and from 13C nuclei. When applied to methyl 13C single-quantum Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion experiments for studies of chemical exchange, the selection of the slow-relaxing 13C transitions results in a significant decrease in intrinsic (exchange-free) transverse spin relaxation rates of all exchanging species. For exchanging systems involving high-molecular-weight species, the lower transverse relaxation rates translate into an increase in the information content of the resulting relaxation dispersion profiles.


Assuntos
Isótopos de Carbono/química , Ressonância Magnética Nuclear Biomolecular , Proteínas/química , Termodinâmica
14.
J Phys Chem Lett ; 11(14): 5643-5648, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32589032

RESUMO

An approach for the quantitative description of the kinetics of very fast exchange processes (τex < 50-100 µs) associated with transient, reversible protein oligomerization, is presented. We show that on-resonance 15N-R1ρ measurements conducted as a function of protein concentration at several spin-lock radio frequency field strengths are indispensable for unambiguous determination of the rate constants for interconversion between monomeric and higher order oligomeric species. The approach is experimentally demonstrated on the study of fast, reversible tetramerization of the full-length Huntingtin exon 1 protein, httex1, responsible for Huntington's disease. Incorporation of concentration-dependent 15N-R2,eff data, obtained from on-resonance R1ρ measurements performed at three spin-lock field strengths, into analysis of the kinetic scheme describing reversible tetramerization of httex1 allowed us to uniquely determine the rate constants of interconversion between the various species. This approach serves as a valuable complement to the existing array of NMR techniques for studying early, transient oligomerization events in protein aggregation pathways.


Assuntos
Proteína Huntingtina/química , Multimerização Proteica , Cinética , Ressonância Magnética Nuclear Biomolecular
15.
Chemphyschem ; 21(11): 1087-1091, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32246547

RESUMO

Dynamics of protein side chains is one of the principal determinants of conformational entropy in protein structures and molecular recognition events. We describe NMR experiments that rely on the use of magic-angle pulses for efficient isolation of degenerate 1 H transitions of the I=3/2 manifold of 13 CH3 methyl groups, and serve as 'building blocks' for the measurement of transverse spin relaxation rates of the fast- and slow-relaxing 1 H transitions - the primary quantitative reporters of methyl axis dynamics in selectively {13 CH3 }-methyl-labelled, highly deuterated proteins. The magic-angle-pulse driven experiments are technically simpler and, in the absence of relaxation, predicted to be 2.3-fold more sensitive than previously developed analogous schemes. Validation of the methodology on a sample of {13 CH3 }-labeled ubiquitin demonstrates quantitative agreement between order parameters of methyl three-fold symmetry axis obtained with magic-angle-pulse driven experiments and other established NMR techniques, paving the way for studies of methyl axis dynamics in human DNAJB6b chaperone, a protein that undergoes exchange with high-molecular-weight oligomeric species.


Assuntos
Deutério/química , Proteínas/química , Humanos , Ressonância Magnética Nuclear Biomolecular/métodos , Ubiquitina/química
16.
Proc Natl Acad Sci U S A ; 117(11): 5844-5852, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32127471

RESUMO

Human profilin I reduces aggregation and concomitant toxicity of the polyglutamine-containing N-terminal region of the huntingtin protein encoded by exon 1 (httex1) and responsible for Huntington's disease. Here, we investigate the interaction of profilin with httex1 using NMR techniques designed to quantitatively analyze the kinetics and equilibria of chemical exchange at atomic resolution, including relaxation dispersion, exchange-induced shifts, and lifetime line broadening. We first show that the presence of two polyproline tracts in httex1, absent from a shorter huntingtin variant studied previously, modulates the kinetics of the transient branched oligomerization pathway that precedes nucleation, resulting in an increase in the populations of the on-pathway helical coiled-coil dimeric and tetrameric species (τex ≤ 50 to 70 µs), while leaving the population of the off-pathway (nonproductive) dimeric species largely unaffected (τex ∼750 µs). Next, we show that the affinity of a single molecule of profilin to the polyproline tracts is in the micromolar range (Kdiss ∼ 17 and ∼ 31 µM), but binding of a second molecule of profilin is negatively cooperative, with the affinity reduced ∼11-fold. The lifetime of a 1:1 complex of httex1 with profilin, determined using a shorter huntingtin variant containing only a single polyproline tract, is shown to be on the submillisecond timescale (τex ∼ 600 µs and Kdiss ∼ 50 µM). Finally, we demonstrate that, in stable profilin-httex1 complexes, the productive oligomerization pathway, leading to the formation of helical coiled-coil httex1 tetramers, is completely abolished, and only the pathway resulting in "nonproductive" dimers remains active, thereby providing a mechanistic basis for how profilin reduces aggregation and toxicity of httex1.


Assuntos
Éxons , Proteína Huntingtina/química , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Profilinas/química , Profilinas/metabolismo , Sítios de Ligação , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Peptídeos , Conformação Proteica , Domínios Proteicos
17.
J Biomol NMR ; 74(2-3): 111-118, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31950428

RESUMO

Modelling of protein structures based on backbone chemical shifts, using programs such as CS-ROSETTA, is becoming increasingly popular, especially for systems where few restraints are available or where homologous structures are already known. While the reliability of CS-ROSETTA calculations can be improved by incorporation of some additional backbone NMR data such as those afforded by residual dipolar couplings or minimal NOE data sets involving backbone amide protons, the sidechain conformations are largely modelled by statistical energy terms. Here, we present a simple method based on methyl residual dipolar couplings that can be used to determine the rotameric state of the threefold symmetry axis of methyl groups that occupy a single rotamer, determine rotameric distributions, and identify regions of high flexibility. The method is demonstrated for methyl side chains of a deletion variant of the human chaperone DNAJB6b.


Assuntos
Simulação por Computador , Proteínas de Choque Térmico HSP40/química , Modelos Moleculares , Chaperonas Moleculares/química , Proteínas do Tecido Nervoso/química , Ressonância Magnética Nuclear Biomolecular , Humanos
18.
Chemphyschem ; 21(1): 13-19, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31703148

RESUMO

Optimized NMR experiments are developed for isolating magnetization belonging to the I=1/2 manifolds of 13 CH3 methyl groups in proteins, enabling the manipulation of the magnetization of a 13 CH3 moiety as if it were an AX (1 H-13 C) spin-system. These experiments result in the same 'simplification' of a 13 CH3 spin-system that would be obtained from the production of {13 CHD2 }-methyl-labeled protein samples. The sensitivity of I=1/2 manifold-selection experiments is a factor of approximately 2 less than that of the corresponding experiments acquired on {13 CHD2 }-labeled methyl groups. The methodology described here is primarily intended for small-to-medium sized proteins, where the losses in sensitivity associated with the isolation of I=1/2 manifold transitions can be tolerated. Several NMR applications that benefit from simplification of the 13 CH3 (AX3 ) spin-systems are described, with an emphasis on the measurements of methyl 1 H-13 C residual dipolar couplings in a {13 CH3 }-methyl-labeled deletion mutant of the human chaperone DNAJB6b, where modulation of NMR signal intensities due to evolution of methyl 1 H-13 C scalar and dipolar couplings follows a simple cosine function characteristic of an AX (1 H-13 C) spin-system, significantly simplifying data analysis.


Assuntos
Malato Sintase/química , Ressonância Magnética Nuclear Biomolecular , Ubiquitina/química , Humanos , Malato Sintase/metabolismo
19.
Proc Natl Acad Sci U S A ; 116(43): 21529-21538, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31591220

RESUMO

J-domain chaperones are involved in the efficient handover of misfolded/partially folded proteins to Hsp70 but also function independently to protect against cell death. Due to their high flexibility, the mechanism by which they regulate the Hsp70 cycle and how specific substrate recognition is performed remains unknown. Here we focus on DNAJB6b, which has been implicated in various human diseases and represents a key player in protection against neurodegeneration and protein aggregation. Using a variant that exists mainly in a monomeric form, we report the solution structure of an Hsp40 containing not only the J and C-terminal substrate binding (CTD) domains but also the functionally important linkers. The structure reveals a highly dynamic protein in which part of the linker region masks the Hsp70 binding site. Transient interdomain interactions via regions crucial for Hsp70 binding create a closed, autoinhibited state and help retain the monomeric form of the protein. Detailed NMR analysis shows that the CTD (but not the J domain) self-associates to form an oligomer comprising ∼35 monomeric units, revealing an intricate balance between intramolecular and intermolecular interactions. The results shed light on the mechanism of autoregulation of the Hsp70 cycle via conserved parts of the linker region and reveal the mechanism of DNAJB6b oligomerization and potentially antiaggregation.


Assuntos
Proteínas de Choque Térmico HSP40/química , Proteínas de Choque Térmico HSP40/metabolismo , Chaperonas Moleculares/química , Proteínas do Tecido Nervoso/química , Proteostase , Sítios de Ligação , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Imageamento por Ressonância Magnética , Modelos Moleculares , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica , Domínios Proteicos
20.
J Biomol NMR ; 73(8-9): 461-469, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31407202

RESUMO

A brief overview of theoretical and experimental aspects of the Dark state Exchange Saturation Transfer (DEST) and lifetime line broadening ([Formula: see text]) NMR methodologies is presented from a physico-chemical perspective. We describe how the field-dependence of [Formula: see text] can be used for determining the exchange regime on the transverse spin relaxation time-scale. Some limitations of DEST/[Formula: see text] methodology in applications to molecular systems with intermediate molecular weights are discussed, and the means of overcoming these limitations via the use of closely related exchange NMR techniques is presented. Finally, several applications of DEST/[Formula: see text] methodology are described from a methodological viewpoint, with an emphasis on providing examples of how kinetic and relaxation parameters of exchange can be reliably extracted from the experimental data in each particular case.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Cinética , Peso Molecular , Domínios e Motivos de Interação entre Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...