Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pediatr Res ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745028

RESUMO

OBJECTIVE: To assess whether computational electroencephalogram (EEG) measures during the first day of life correlate to clinical outcomes in infants with perinatal asphyxia with or without hypoxic-ischemic encephalopathy (HIE). METHODS: We analyzed four-channel EEG monitoring data from 91 newborn infants after perinatal asphyxia. Altogether 42 automatically computed amplitude- and synchrony-related EEG features were extracted as 2-hourly average at very early (6 h) and early (24 h) postnatal age; they were correlated to the severity of HIE in all infants, and to four clinical outcomes available in a subcohort of 40 newborns: time to full oral feeding (nasogastric tube NGT), neonatal brain MRI, Hammersmith Infant Neurological Examination (HINE) at three months, and Griffiths Scales at two years. RESULTS: At 6 h, altogether 14 (33%) EEG features correlated significantly to the HIE grade ([r]= 0.39-0.61, p < 0.05), and one feature correlated to NGT ([r]= 0.50). At 24 h, altogether 13 (31%) EEG features correlated significantly to the HIE grade ([r]= 0.39-0.56), six features correlated to NGT ([r]= 0.36-0.49) and HINE ([r]= 0.39-0.61), while no features correlated to MRI or Griffiths Scales. CONCLUSIONS: Our results show that the automatically computed measures of early cortical activity may provide outcome biomarkers for clinical and research purposes. IMPACT: The early EEG background and its recovery after perinatal asphyxia reflect initial severity of encephalopathy and its clinical recovery, respectively. Computational EEG features from the early hours of life show robust correlations to HIE grades and to early clinical outcomes. Computational EEG features may have potential to be used as cortical activity biomarkers in early hours after perinatal asphyxia.

2.
Pediatr Res ; 96(1): 132-140, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38135725

RESUMO

BACKGROUND: Perinatal asphyxia often leads to hypoxic-ischemic encephalopathy (HIE) with a high risk of neurodevelopmental consequences. While moderate and severe HIE link to high morbidity, less is known about brain effects of perinatal asphyxia with no or only mild HIE. Here, we test the hypothesis that cortical activity networks in the newborn infants show a dose-response to asphyxia. METHODS: We performed EEG recordings for infants with perinatal asphyxia/HIE of varying severity (n = 52) and controls (n = 53) and examined well-established computational metrics of cortical network activity. RESULTS: We found graded alterations in cortical activity networks according to severity of asphyxia/HIE. Furthermore, our findings correlated with early clinical recovery measured by the time to attain full oral feeding. CONCLUSION: We show that both local and large-scale correlated cortical activity are affected by increasing severity of HIE after perinatal asphyxia, suggesting that HIE and perinatal asphyxia are better represented as a continuum rather than the currently used discreet categories. These findings imply that automated computational measures of cortical function may be useful in characterizing the dose effects of adversity in the neonatal brain; such metrics hold promise for benchmarking clinical trials via patient stratification or as early outcome measures. IMPACT: Perinatal asphyxia causes every fourth neonatal death worldwide and provides a diagnostic and prognostic challenge for the clinician. We report that infants with perinatal asphyxia show specific graded responses in cortical networks according to severity of asphyxia and ensuing hypoxic-ischaemic encephalopathy. Early EEG recording and automated computational measures of brain function have potential to help in clinical evaluation of infants with perinatal asphyxia.


Assuntos
Asfixia Neonatal , Córtex Cerebral , Eletroencefalografia , Hipóxia-Isquemia Encefálica , Humanos , Recém-Nascido , Asfixia Neonatal/fisiopatologia , Asfixia Neonatal/complicações , Hipóxia-Isquemia Encefálica/fisiopatologia , Feminino , Masculino , Córtex Cerebral/fisiopatologia , Estudos de Casos e Controles , Rede Nervosa/fisiopatologia , Índice de Gravidade de Doença
3.
Eur J Med Genet ; 66(8): 104807, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37385405

RESUMO

Jansen de Vries syndrome (JDVS, OMIM: 617450) is a rare neurodevelopmental disorder associated with hypotonia, behavioral features, high threshold to pain, short stature, ophthalmological abnormalities, dysmorphism and occasionally a structural cardiac condition. It is caused by truncating variants of the last and penultimate exons of PPM1D. So far, 21 patients with JVDS have been reported in the literature. Here, we describe four novel cases of JVDS and review the current literature. Notably, our patients 1, 3 and 4 do not have intellectual disability albeit they have significant developmental difficulties. Thus, the phenotype may span from a classic intellectual disability syndrome to a milder neurodevelopmental disorder. Interestingly, two of our patients have received successful growth hormone treatment. Considering the phenotype of all the known JDVS patients, a cardiological consultation is recommended, as at least 7/25 patients showed a structural cardiac defect. Episodic fever and vomiting may associate with hypoglycemia and may even mimic a metabolic disorder. We also report the first JDVS patient with a mosaic gene defect and a mild neurodevelopmental phenotype.


Assuntos
Anormalidades Múltiplas , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/complicações , Anormalidades Múltiplas/genética , Mutação , Transtornos do Neurodesenvolvimento/genética , Fenótipo
4.
Cereb Cortex ; 33(8): 4699-4713, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36368888

RESUMO

Controlled assessment of functional cortical networks is an unmet need in the clinical research of noncooperative subjects, such as infants. We developed an automated, pneumatic stimulation method to actuate naturalistic movements of an infant's hand, as well as an analysis pipeline for assessing the elicited electroencephalography (EEG) responses and related cortical networks. Twenty newborn infants with perinatal asphyxia were recruited, including 7 with mild-to-moderate hypoxic-ischemic encephalopathy (HIE). Statistically significant corticokinematic coherence (CKC) was observed between repetitive hand movements and EEG in all infants, peaking near the contralateral sensorimotor cortex. CKC was robust to common sources of recording artifacts and to changes in vigilance state. A wide recruitment of cortical networks was observed with directed phase transfer entropy, also including areas ipsilateral to the stimulation. The extent of such recruited cortical networks was quantified using a novel metric, Spreading Index, which showed a decrease in 4 (57%) of the infants with HIE. CKC measurement is noninvasive and easy to perform, even in noncooperative subjects. The stimulation and analysis pipeline can be fully automated, including the statistical evaluation of the cortical responses. Therefore, the CKC paradigm holds great promise as a scientific and clinical tool for controlled assessment of functional cortical networks.


Assuntos
Magnetoencefalografia , Movimento , Recém-Nascido , Humanos , Lactente , Magnetoencefalografia/métodos , Fenômenos Biomecânicos/fisiologia , Movimento/fisiologia , Eletroencefalografia , Mãos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA