Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 8(42): eabp9329, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36260662

RESUMO

During the last glacial period, the Laurentide Ice Sheet (LIS) underwent episodes of rapid iceberg discharge, recorded in ocean sediments as "Heinrich events" (HEs). Two competing models attempt to describe the stimulus for HEs via either internal ice sheet oscillations or external ocean-climate system forcing. We present a terrestrial record of HEs from the northeastern LIS that strongly supports ocean-climate forcing. Subglacial carbonate precipitates from Baffin Island record episodes of subglacial melting coincident with the three most recent HEs, resulting from acceleration of nearby marine-terminating ice streams. Synchronized ice stream acceleration over Baffin Island and Hudson Strait is inconsistent with internal ice sheet oscillations alone and indicates a shared ocean-climate stimulus to coordinate these different glaciological systems. Isotopic compositions of these precipitates record widespread subglacial groundwater connectivity beneath the LIS. Extensive basal melting and flushing of these aquifers during the last HE may have been a harbinger for terminal deglaciation.

2.
Nat Commun ; 13(1): 5428, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109505

RESUMO

Ice cores and offshore sedimentary records demonstrate enhanced ice loss along Antarctic coastal margins during millennial-scale warm intervals within the last glacial termination. However, the distal location and short temporal coverage of these records leads to uncertainty in both the spatial footprint of ice loss, and whether millennial-scale ice response occurs outside of glacial terminations. Here we present a >100kyr archive of periodic transitions in subglacial precipitate mineralogy that are synchronous with Late Pleistocene millennial-scale climate cycles. Geochemical and geochronologic data provide evidence for opal formation during cold periods via cryoconcentration of subglacial brine, and calcite formation during warm periods through the addition of subglacial meltwater originating from the ice sheet interior. These freeze-flush cycles represent cyclic changes in subglacial hydrologic-connectivity driven by ice sheet velocity fluctuations. Our findings imply that oscillating Southern Ocean temperatures drive a dynamic response in the Antarctic ice sheet on millennial timescales, regardless of the background climate state.

3.
Proc Natl Acad Sci U S A ; 119(10)2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35193940

RESUMO

Subglacial hydrologic systems regulate ice sheet flow, causing acceleration or deceleration, depending on hydraulic efficiency and the rate at which surface meltwater is delivered to the bed. Because these systems are rarely observed, ice sheet basal drainage represents a poorly integrated and uncertain component of models used to predict sea level changes. Here, we report radar-derived basal melt rates and unexpectedly warm subglacial conditions beneath a large Greenlandic outlet glacier. The basal melt rates averaged 14 mm ⋅d-1 over 4 months, peaking at 57 mm ⋅d-1 when basal water temperature reached +0.88 ∘C in a nearby borehole. We attribute both observations to the conversion of potential energy of surface water to heat in the basal drainage system, which peaked during a period of rainfall and intense surface melting. Our findings reveal limitations in the theory of channel formation, and we show that viscous dissipation far surpasses other basal heat sources, even in a distributed, high-pressure system.

4.
Environ Microbiol ; 21(7): 2290-2306, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30927377

RESUMO

Antarctic subglacial environments host microbial ecosystems and are proving to be geochemically and biologically diverse. The Taylor Glacier, Antarctica, periodically expels iron-rich brine through a conduit sourced from a deep subglacial aquifer, creating a dramatic red surface feature known as Blood Falls. We used Illumina MiSeq sequencing to describe the core microbiome of this subglacial brine and identified previously undetected but abundant groups including the candidate bacterial phylum Atribacteria and archaeal phylum Pacearchaeota. Our work represents the first microbial characterization of samples collected from within a glacier using a melt probe, and the only Antarctic subglacial aquatic environment that, to date, has been sampled twice. A comparative analysis showed the brine community to be stable at the operational taxonomic unit level of 99% identity over a decade. Higher resolution sequencing enabled deconvolution of the microbiome of subglacial brine from mixtures of materials collected at the glacier surface. Diversity patterns between this brine and samples from the surrounding landscape provide insight into the hydrological connectivity of subglacial fluids to the surface polar desert environment. Understanding subice brines collected on the surfaces of thick ice covers has implications for analyses of expelled materials that may be sampled on icy extraterrestrial worlds.


Assuntos
Archaea/classificação , Bactérias/classificação , Camada de Gelo/microbiologia , Regiões Antárticas , Archaea/genética , Archaea/isolamento & purificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , Ecossistema , Sequenciamento de Nucleotídeos em Larga Escala , Camada de Gelo/química , Microbiota , RNA Ribossômico 16S/genética , Sais/análise
5.
Sci Rep ; 7(1): 1262, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28455508

RESUMO

Marine geological data show that the West Antarctic Ice Sheet (WAIS) advanced to the eastern Ross Sea shelf edge during the Last Glacial Maximum (LGM) and eventually retreated ~1000 km to the current grounding-line position on the inner shelf. During the early deglacial, the WAIS deposited a voluminous stack of overlapping grounding zone wedges (GZWs) on the outer shelf of the Whales Deep Basin. The large sediment volume of the GZW cluster suggests that the grounding-line position of the paleo-Bindschadler Ice Stream was relatively stationary for a significant time interval. We used an upper bound estimate of paleo-sediment flux to investigate the lower bound duration over which the ice stream would have deposited sediment to account for the GZW volume. Our calculations show that the cluster represents more than three millennia of ice-stream sedimentation. This long duration grounding was probably facilitated by rapid GZW growth. The subsequent punctuated large-distance (~200 km) grounding-line retreat may have been a highly non-linear ice sheet response to relatively continuous external forcing such as gradual climate warming or sea-level rise. These findings indicate that reliable predictions of future WAIS retreat may require incorporation of realistic calculations of sediment erosion, transport and deposition.

6.
Philos Trans A Math Phys Eng Sci ; 374(2059)2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26667918

RESUMO

Accumulations of sediment beneath the Antarctic Ice Sheet contain a range of physical and chemical proxies with the potential to document changes in ice sheet history and to identify and characterize life in subglacial settings. Retrieving subglacial sediments and sediment cores presents several unique challenges to existing technologies. This paper briefly reviews the history of sediment sampling in subglacial environments. It then outlines some of the technological challenges and constraints in developing the corers being used in sub-ice shelf settings (e.g. George VI Ice Shelf and Larsen Ice Shelf), under ice streams (e.g. Rutford Ice Stream), at or close to the grounding line (e.g. Whillans Ice Stream) and in subglacial lakes deep under the ice sheet (e.g. Lake Ellsworth). The key features of the corers designed to operate in each of these subglacial settings are described and illustrated together with comments on their deployment procedures.

7.
Sci Adv ; 1(6): e1500093, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26601210

RESUMO

The geothermal heat flux is a critical thermal boundary condition that influences the melting, flow, and mass balance of ice sheets, but measurements of this parameter are difficult to make in ice-covered regions. We report the first direct measurement of geothermal heat flux into the base of the West Antarctic Ice Sheet (WAIS), below Subglacial Lake Whillans, determined from the thermal gradient and the thermal conductivity of sediment under the lake. The heat flux at this site is 285 ± 80 mW/m(2), significantly higher than the continental and regional averages estimated for this site using regional geophysical and glaciological models. Independent temperature measurements in the ice indicate an upward heat flux through the WAIS of 105 ± 13 mW/m(2). The difference between these heat flux values could contribute to basal melting and/or be advected from Subglacial Lake Whillans by flowing water. The high geothermal heat flux may help to explain why ice streams and subglacial lakes are so abundant and dynamic in this region.

8.
Nature ; 498(7452): 51-9, 2013 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-23739423

RESUMO

Since the 2007 Intergovernmental Panel on Climate Change Fourth Assessment Report, new observations of ice-sheet mass balance and improved computer simulations of ice-sheet response to continuing climate change have been published. Whereas Greenland is losing ice mass at an increasing pace, current Antarctic ice loss is likely to be less than some recently published estimates. It remains unclear whether East Antarctica has been gaining or losing ice mass over the past 20 years, and uncertainties in ice-mass change for West Antarctica and the Antarctic Peninsula remain large. We discuss the past six years of progress and examine the key problems that remain.


Assuntos
Mudança Climática/estatística & dados numéricos , Camada de Gelo , Incerteza , Ar , Regiões Antárticas , Simulação por Computador , Groenlândia , Neve , Temperatura
9.
Science ; 331(6024): 1524-5, 2011 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-21436426
10.
Antonie Van Leeuwenhoek ; 99(2): 423-30, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20803250

RESUMO

Sediment cores taken from Great Slave Lake, Canada, were analysed to investigate their metabolically active microbial populations and geochemistry. The amplification of cDNA detected metabolically active bacterial (50 separate bands) and archaeal (49 separate band) communities. The bacterial communities were further resolved indicating active actinobacterial and γ-proteobacterial communities (36 and 43 individual bands respectively). Redundancy discriminate analysis and Monte Carlo permutation testing demonstrated the significant impact of geochemical parameters on microbial community structures. Geochemical analyses suggest that the upper 0.4 m represents soil weathering and erosion in the lake catchment. An increase in organic carbon in the lower core suggests either more primary productivity, indicating warmer climate conditions, associated with Holocene Climatic Optimum conditions pre 5,000 years BP or change from a reducing environment in the lower core to an oxidizing environment during more recent deposition. Drivers for bacterial, archaeal and actinobacterial community structures were sediment particle size, and its mineral composition. Depth also significantly affected γ- proteobacterial community structure. In contrast the organic carbon content did not significantly shape the microbial community structures within the sediment. This study indicates that geochemical parameters significantly contribute to microbial community structure in these sediments.


Assuntos
Archaea/classificação , Bactérias/classificação , Biodiversidade , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Minerais/análise , Archaea/genética , Archaea/isolamento & purificação , Bactérias/genética , Bactérias/isolamento & purificação , Canadá , Metagenoma , Estatística como Assunto
11.
Environ Microbiol ; 11(3): 609-15, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19278447

RESUMO

Subglacial environments, particularly those that lie beneath polar ice sheets, are beginning to be recognized as an important part of Earth's biosphere. However, except for indirect indications of microbial assemblages in subglacial Lake Vostok, Antarctica, no sub-ice sheet environments have been shown to support microbial ecosystems. Here we report 16S rRNA gene and isolate diversity in sediments collected from beneath the Kamb Ice Stream, West Antarctic Ice Sheet and stored for 15 months at 4 degrees C. This is the first report of microbes in samples from the sediment environment beneath the Antarctic Ice Sheet. The cells were abundant ( approximately 10(7) cells g(-1)) but displayed low diversity (only five phylotypes), likely as a result of enrichment during storage. Isolates were cold tolerant and the 16S rRNA gene diversity was a simplified version of that found in subglacial alpine and Arctic sediments and water. Although in situ cell abundance and the extent of wet sediments beneath the Antarctic ice sheet can only be roughly extrapolated on the basis of this sample, it is clear that the subglacial ecosystem contains a significant and previously unrecognized pool of microbial cells and associated organic carbon that could potentially have significant implications for global geochemical processes.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Biodiversidade , Sedimentos Geológicos/microbiologia , Regiões Antárticas , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Genes de RNAr , Camada de Gelo , Dados de Sequência Molecular , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico
12.
Geochem Trans ; 9: 7, 2008 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-18513396

RESUMO

Productivity in the Southern Oceans is iron-limited, and the supply of iron dissolved from aeolian dust is believed to be the main source from outside the marine reservoir. Glacial sediment sources of iron have rarely been considered, as the iron has been assumed to be inert and non-bioavailable. This study demonstrates the presence of potentially bioavailable Fe as ferrihydrite and goethite in nanoparticulate clusters, in sediments collected from icebergs in the Southern Ocean and glaciers on the Antarctic landmass. Nanoparticles in ice can be transported by icebergs away from coastal regions in the Southern Ocean, enabling melting to release bioavailable Fe to the open ocean. The abundance of nanoparticulate iron has been measured by an ascorbate extraction. This data indicates that the fluxes of bioavailable iron supplied to the Southern Ocean from aeolian dust (0.01-0.13 Tg yr(-1)) and icebergs (0.06-0.12 Tg yr(-1)) are comparable. Increases in iceberg production thus have the capacity to increase productivity and this newly identified negative feedback may help to mitigate fossil fuel emissions.

13.
Philos Trans A Math Phys Eng Sci ; 364(1844): 1795-814, 2006 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-16782610

RESUMO

Using inverse methods constrained by recent satellite observations, we have produced a comprehensive estimate of the basal shear stress beneath the Filchner-Ronne ice streams. The inversions indicate that a weak bed (approx. 4-20kPa) underlies much of these ice streams. Compared to the Ross ice streams, the distribution of weak subglacial till is more heterogeneous, with 'sticky spots' providing much of the resistance to flow. A weak bed beneath Recovery ice stream extends several hundred kilometres inland with flow. Along this ice stream, discrepancies between thickness measurements and flux estimates suggest the existence of a deep (-1400m) trough not resolved by existing maps of subglacial topography. We hypothesize that the presence of this and other deep troughs is a major influence on this sector of the ice sheet that is not fully incorporated in current models of ice-sheet evolution.

14.
Science ; 295(5554): 476-80, 2002 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-11799237

RESUMO

We have used ice-flow velocity measurements from synthetic aperture radar to reassess the mass balance of the Ross Ice Streams, West Antarctica. We find strong evidence for ice-sheet growth (+26.8 gigatons per year), in contrast to earlier estimates indicating a mass deficit (-20.9 gigatons per year). Average thickening is equal to approximately 25% of the accumulation rate, with most of this growth occurring on Ice Stream C. Whillans Ice Stream, which was thought to have a significantly negative mass balance, is close to balance, reflecting its continuing slowdown. The overall positive mass balance may signal an end to the Holocene retreat of these ice streams.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA