Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36771178

RESUMO

Oxidative stress and the hypoxic microenvironment play a key role in the progression of human melanoma, one of the most aggressive skin cancers. The aim of our study was to evaluate the effect of Hypericum perforatum extracts of different origins (both commercially available (HpEx2) and laboratory-prepared from wild grown (HpEx12) and in vitro cultured (HpEx13) plants) and hyperforin salt on WM115 primary and WM266-4 lymph node metastatic human melanoma cells cultured under normoxic and hypoxic conditions. The polyphenol content, radical scavenging activity, and hyperforin concentration were determined in the extracts, while cell viability, apoptosis, ROS production, and expression of NRF2 and HO-1, important oxidative stress-related factors, were analyzed after 24 h of cell stimulation with HpExs and hyperforin salt. We found that cytotoxic, pro-apoptotic and antioxidant effects depend on the extract composition, the stage of melanoma progression, and the oxygen level. Hyperforin salt showed lower activity than H. perforatum extracts. Our study for the first time showed that the anticancer activity of H. perforatum extracts differs in normoxia and hypoxia. Importantly, the composition of extracts of various origins, including in vitro cultured, resulting in their unique properties, may be important in the selection of plants for therapeutic application.


Assuntos
Antineoplásicos , Hypericum , Melanoma , Humanos , Antioxidantes/farmacologia , Hypericum/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Terpenos , Processos Neoplásicos , Melanoma/tratamento farmacológico , Floroglucinol , Hipóxia , Compostos Bicíclicos com Pontes , Microambiente Tumoral
2.
Plants (Basel) ; 11(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36501247

RESUMO

Ornamentals come in a variety of shapes, sizes, and colors to suit a wide range of climates, landscapes, and gardening needs. Compared to demand, a shortage of plant materials and diversity force the search for solutions for their constant acquisition and improvement to increase their commercial value, respectively. In vitro cultures are a suitable solution to meet expectations using callus culture, somatic embryogenesis, protoplast culture, and the organogenesis of protocorm-like bodies; many of these techniques are commercially practiced. Factors such as culture media, explants, carbohydrates, plant growth regulators, and light are associated with the success of in vitro propagation. Techniques, especially embryo rescue and somatic hybridization, are widely used to improve ornamentals. The development of synthetic seed allows season-independent seed production and preservation in the long term. Despite the advantages of propagation and the improvement of ornamentals, many barriers still need to be resolved. In contrast to propagation and crop developmental studies, there is also a high scope for molecular studies, especially epigenetic changes caused by plant tissue culture of ornamentals. In this review, we have accumulated and discussed an overall update on cultivation factors, propagation techniques in ornamental plant tissue culture, in vitro plant improvement techniques, and future perspectives.

3.
Appl Microbiol Biotechnol ; 105(10): 3883-3900, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33914136

RESUMO

Steviol glycosides (SvGls) are plant secondary metabolites belonging to a class of chemical compounds known as diterpenes. SvGls have been discovered only in a few plant species, including in the leaves of Stevia rebaudiana Bertoni. Over the last few decades, SvGls have been extensively researched for their extraordinary sweetness. As a result, the nutritional and pharmacological benefits of these secondary metabolites have grown increasingly apparent. In the near future, SvGls may become a basic, low-calorie, and potent sweetener in the growing natural foods market, and a natural anti-diabetic remedy, a highly competitive alternative to commercially available synthetic drugs. Commercial cultivation of stevia plants and the technologies of SvGls extraction and purification from plant material have already been introduced in many countries. However, new conventional and biotechnological solutions are still being sought to increase the level of SvGls in plants. Since many aspects related to the biochemistry and metabolism of SvGls in vivo, as well as their relationship to the overall physiology of S. rebaudiana are not yet understood, there is also a great need for in-depth scientific research on this topic. Such research may have positive impact on optimization of the profile and SvGls concentration in plants and thus lead to obtaining desired yield. This research summarizes the latest approaches and developments in SvGls production. KEY POINTS: • Steviol glycosides (SvGls) are found in nature in S. rebaudiana plants. • They exhibit nutraceutical properties. • This review provides an insight on different approaches to produce SvGls. • The areas of research that still need to be explored have been identified.


Assuntos
Diterpenos do Tipo Caurano , Stevia , Glucosídeos , Glicosídeos , Folhas de Planta , Edulcorantes
4.
Plant Cell Rep ; 39(6): 779-798, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32232559

RESUMO

KEY MESSAGE: Differences in the composition and the structural organisation of the extracellular matrix correlate with the morphogenic competence of the callus tissue that originated from the isolated endosperm of kiwifruit. The chemical composition and structural organisation of the extracellular matrix, including the cell wall and the layer on its surface, may correspond with the morphogenic competence of a tissue. In the presented study, this relationship was found in the callus tissue that had been differentiated from the isolated endosperm of the kiwiberry, Actinidia arguta. The experimental system was based on callus samples of exactly the same age that had originated from an isolated endosperm but were cultured under controlled conditions promoting either an organogenic or a non-organogenic pathway. The analyses which were performed using bright field, fluorescence and scanning electron microscopy techniques showed significant differences between the two types of calli. The organogenic tissue was compact and the outer walls of the peripheral cells were covered with granular structures. The non-organogenic tissue was composed of loosely attached cells, which were connected via a net-like structure. The extracellular matrices from both the non- and organogenic tissues were abundant in pectic homogalacturonan and extensins (LM19, LM20, JIM11, JIM12 and JIM20 epitopes), but the epitopes that are characteristic for rhamnogalacturonan I (LM5 and LM6), hemicellulose (LM25) and the arabinogalactan protein (LM2) were detected only in the non-organogenic callus. Moreover, we report the epitopes, which presence is characteristic for the Actinidia endosperm (LM21 and LM25, heteromannan and xyloglucan) and for the endosperm-derived cells that undergo dedifferentiation (loss of LM21 and LM25; appearance or increase in the content of LM5, LM6, LM19, JIM11, JIM12, JIM20, JIM8 and JIM16 epitopes).


Assuntos
Actinidia/citologia , Actinidia/metabolismo , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Anticorpos Monoclonais , Calo Ósseo/citologia , Parede Celular/química , Parede Celular/ultraestrutura , Endosperma , Epitopos , Matriz Extracelular/ultraestrutura , Frutas , Glucanos , Imuno-Histoquímica , Microscopia Eletrônica de Varredura , Mucoproteínas , Pectinas , Proteínas de Plantas , Polissacarídeos , Xilanos
5.
Protoplasma ; 251(1): 211-7, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23974526

RESUMO

An evolutionary trend to reduce "unnecessary costs" associated with the sexual reproduction of their amphimictic ancestors, which may result in greater reproductive success, has been observed among the obligatory apomicts. However, in the case of the female gametophyte, knowledge about this trend in apomicts is not sufficient because most of the ultrastructural studies of the female gametophyte have dealt with amphimictic angiosperms. In this paper, we tested the hypothesis that, in contrast to amphimictic plants, synergids in apomictic embryo sacs do not form a filiform apparatus. We compared the synergid structure in two dandelions from sect. Palustria: the amphimictic diploid Taraxacum tenuifolium and the apomictic tetraploid, male-sterile Taraxacum brandenburgicum. Synergids in both species possessed a filiform apparatus. In T. brandenburgicum, both synergids persisted for a long time without any degeneration, in spite of the presence of an embryo and endosperm. We propose that the persistent synergids in apomicts may play a role in the transport of nutrients to the embryo.


Assuntos
Apomixia , Células Germinativas Vegetais/ultraestrutura , Taraxacum/ultraestrutura
6.
Protoplasma ; 250(1): 361-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22643840

RESUMO

The paper reports studies, including histological and ultrastructural analyses, of in vitro cell proliferation and development of immature endosperm tissue isolated from caryopses of Triticum aestivum, Triticum durum, and Triticosecale plants. Endosperm isolated at 7-10 days post-anthesis developed well on MS medium supplemented with auxins and/or cytokinins. The efficiency of endosperm response was highly genotype-dependent and best in two winter cultivars of hexaploid species. The pathways of development and proliferation were very similar among the selected species and cultivars. Histological and scanning electron microscope (SEM) analysis revealed that only the part of the endosperm not touching the medium surface continued growth and development, resulting in swelling. The central part of swollen regions was composed mainly of cells containing many large starch grains. The peripheric parts of developed endosperm consisted of highly vacuolated cells and small cells with dense cytoplasm. SEM showed that cells from the swollen region were covered partially with a membraneous structure. Transmission electron microscope studies of cells from the outer part of the developing region showed features typical for cell activity connected with lipid metabolism.


Assuntos
Grão Comestível/genética , Grão Comestível/ultraestrutura , Endosperma/genética , Endosperma/ultraestrutura , Grão Comestível/crescimento & desenvolvimento , Endosperma/crescimento & desenvolvimento , Genótipo , Microscopia Eletrônica de Varredura
7.
J Plant Physiol ; 168(7): 722-9, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21195506

RESUMO

Stable transformation of Mesembryanthemum crystallinum L. (common ice plant) with a green fluorescent protein (GFP) construct targeted to the endoplasmic reticulum was obtained. Seven and fourteen days after germination seedlings were infected with Agrobacterium rhizogenes strain ARqua1 either by direct coating of the cut radicles with bacteria growing on solid medium or by immersion of the cut surface in bacterial suspension at different optical densities. Both methods of infection resulted in production of GFP-positive roots with a frequency ranging from 6 to 20% according to the age of the explants and the application procedure. The green fluorescing roots displayed the typical hairy root phenotype and were easily maintained in liquid medium without growth regulators for over 2 years. Stable expression of the transgene in the roots was confirmed by polymerase chain reaction (PCR), immunoblotting and the capacity of roots to grow and produce callus on kanamycin-enriched medium. Nineteen endogenous cytokinins were determined in transgenic and non-transformed roots. The results revealed significantly lower levels of the free bases of isopentenyladenine, dihydrozeatin, cis- and trans-zeatin, as well as a conspicuous decline in concentrations of the corresponding nucleosides and most nucleotides in transgenic roots compared to the wild type. Comparison of the cytokinin profiles in transgenic and non-transformed roots suggested that transformation by A. rhizogenes disturbed cytokinin metabolism during the early steps of biosynthesis. Calli obtained from transformed roots were GFP-positive and remained non-regenerative or displayed high rhizogenic potential depending on the auxin/cytokinin ratio in the medium. Calli and callus-derived roots showed a strong GFP signal for over 2 years.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Mesembryanthemum/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Rhizobium/genética , Transformação Genética/genética , Proteínas de Fluorescência Verde/genética , Mesembryanthemum/genética , Plantas Geneticamente Modificadas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...