Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Biochem ; 115(12): 2055-64, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25043224

RESUMO

In a complex inflammatory airways disease such as asthma, abnormalities in a plethora of molecular and cellular pathways ultimately culminate in characteristic impairments in respiratory function. The ability to study disease pathophysiology in the setting of a functioning immune and respiratory system therefore makes mouse models an invaluable tool in translational research. Despite the vast understanding of inflammatory airways diseases gained from mouse models to date, concern over the validity of mouse models continues to grow. Therefore the aim of this review is twofold; firstly, to evaluate mouse models of asthma in light of current clinical definitions, and secondly, to provide a framework by which mouse models can be continually refined so that they continue to stand at the forefront of translational science. Indeed, it is in viewing mouse models as a continual work in progress that we will be able to target our research to those patient populations in whom current therapies are insufficient.


Assuntos
Asma/imunologia , Animais , Asma/patologia , Asma/terapia , Humanos , Pulmão/patologia , Camundongos Transgênicos , Fenótipo , Pesquisa Translacional Biomédica
2.
Free Radic Biol Med ; 73: 143-53, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24816292

RESUMO

Interleukin-17A (IL-17A) is a newly emerging player in the pathogenesis of chronic lung diseases that amplifies inflammatory responses and promotes tissue remodeling. Stimulation of lung epithelial cells with IL-17A leads to activation of the transcription factor nuclear factor κB (NF-κB), a key player in the orchestration of lung inflammation. We have previously demonstrated the importance of the redox-dependent posttranslational modification S-glutathionylation in limiting activation of NF-κB and downstream gene induction. Under physiological conditions, the enzyme glutaredoxin 1 (Grx1) acts to deglutathionylate NF-κB proteins, which restores functional activity. In this study, we sought to determine the impact of S-glutathionylation on IL-17A-induced NF-κB activation and expression of proinflammatory mediators. C10 mouse lung alveolar epithelial cells or primary mouse tracheal epithelial cells exposed to IL-17A show rapid activation of NF-κB and the induction of proinflammatory genes. Upon IL-17A exposure, sulfenic acid formation and S-glutathionylated proteins increased. Assessment of S-glutathionylation of NF-κB pathway components revealed S-glutathionylation of RelA (RelA-SSG) and inhibitory κB kinase α (IKKα-SSG) after stimulation with IL-17A. SiRNA-mediated ablation of Grx1 increased both RelA-SSG and IKKα-SSG and acutely increased nuclear content of RelA and tended to decrease nuclear RelB. SiRNA-mediated ablation or genetic ablation of Glrx1 decreased the expression of the NF-κB-regulated genes KC and CCL20 in response to IL-17A, but conversely increased the expression of IL-6. Last, siRNA-mediated ablation of IKKα attenuated nuclear RelA and RelB content and decreased expression of KC and CCL20 in response to IL-17A. Together, these data demonstrate a critical role for the S-glutathionylation/Grx1 redox axis in regulating IKKα and RelA S-glutathionylation and the responsiveness of epithelial cells to IL-17A.


Assuntos
Glutarredoxinas/genética , Quinase I-kappa B/metabolismo , Interleucina-17/metabolismo , Fator de Transcrição RelA/metabolismo , Fator de Transcrição RelB/metabolismo , Animais , Células Cultivadas , Quimiocina CCL20/biossíntese , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Glutationa/química , Quinase I-kappa B/genética , Inflamação/imunologia , Inflamação/patologia , Interleucina-6/biossíntese , Pulmão/citologia , Pneumopatias/patologia , Camundongos , Camundongos Knockout , Oxirredução , Processamento de Proteína Pós-Traducional , Interferência de RNA , RNA Interferente Pequeno , Mucosa Respiratória/citologia , Ácidos Sulfênicos/metabolismo , Traqueia/citologia
3.
Am J Physiol Lung Cell Mol Physiol ; 306(9): L866-75, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24610935

RESUMO

Chronic allergic asthma leads to airway remodeling and subepithelial fibrosis via mechanisms not fully understood. Airway remodeling is amplified by profibrotic mediators, such as transforming growth factor-ß1 (TGF-ß1), which plays a cardinal role in various models of fibrosis. We recently have identified a critical role for c-Jun-NH2-terminal-kinase (JNK) 1 in augmenting the profibrotic effects of TGF-ß1, linked to epithelial-to-mesenchymal transition of airway epithelial cells. To examine the role of JNK1 in house dust mite (HDM)-induced airway remodeling, we induced allergic airway inflammation in wild-type (WT) and JNK1-/- mice by intranasal administration of HDM extract. WT and JNK1-/- mice were sensitized with intranasal aspirations of HDM extract for 15 days over 3 wk. HDM caused similar increases in airway hyperresponsiveness, mucus metaplasia, and airway inflammation in WT and JNK1-/- mice. In addition, the profibrotic cytokine TGF-ß1 and phosphorylation of Smad3 were equally increased in WT and JNK1-/- mice. In contrast, increases in collagen content in lung tissue induced by HDM were significantly attenuated in JNK1-/- mice compared with WT controls. Furthermore HDM-induced increases of α-smooth muscle actin (α-SMA) protein and mRNA expression as well as the mesenchymal markers high-mobility group AT-hook 2 and collagen1A1 in WT mice were attenuated in JNK1-/- mice. The let-7 family of microRNAs has previously been linked to fibrosis. HDM exposure in WT mice and primary lung epithelial cells resulted in striking decreases in let-7g miRNA that were not observed in mice or primary lung epithelial cells lacking JNK1-/- mice. Overexpression of let-7g in lung epithelial cells reversed the HDM-induced increases in α-SMA. Collectively, these findings demonstrate an important requirement for JNK1 in promoting HDM-induced fibrotic airway remodeling.


Assuntos
Remodelação das Vias Aéreas , Hiper-Reatividade Brônquica/patologia , Dermatophagoides pteronyssinus/patogenicidade , Proteínas Quinases JNK Ativadas por Mitógeno/fisiologia , Pneumonia/patologia , Sistema Respiratório/patologia , Animais , Western Blotting , Hiper-Reatividade Brônquica/etiologia , Hiper-Reatividade Brônquica/metabolismo , Citocinas/genética , Citocinas/metabolismo , Técnicas Imunoenzimáticas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pneumonia/etiologia , Pneumonia/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Sistema Respiratório/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
4.
Respir Res ; 14: 141, 2013 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-24364984

RESUMO

BACKGROUND: The endoplasmic reticulum (ER) stress response participates in many chronic inflammatory and autoimmune diseases. In the current study, we sought to examine the contribution of ER stress transducers in the pathogenesis of three principal facets of allergic asthma: inflammation, airway fibrosis, and airways hyperresponsiveness. METHODS: House Dust Mite (HDM) was used as an allergen for in vitro and in vivo challenge of primary human and murine airway epithelial cells. ER stress transducers were modulated using specific small interfering RNAs (siRNAs) in vivo. Inflammation, airway remodeling, and hyperresponsiveness were measured by total bronchoalveolar lavage (BAL) cell counts, determination of collagen, and methacholine responsiveness in mice, respectively. RESULTS: Challenge of human bronchiolar and nasal epithelial cells with HDM extract induced the ER stress transducer, activating transcription factor 6 α (ATF6α) as well as protein disulfide isomerase, ERp57, in association with activation of caspase-3. SiRNA-mediated knockdown of ATF6α and ERp57 during HDM administration in mice resulted in a decrease in components of HDM-induced ER stress, disulfide mediated oligomerization of Bak, and activation of caspase-3. Furthermore, siRNA-mediated knockdown of ATF6α and ERp57 led to decreased inflammation, airway hyperresponsiveness and airway fibrosis. CONCLUSION: Collectively, our work indicates that HDM induces ER stress in airway epithelial cells and that ATF6α and ERp57 play a significant role in the development of cardinal features of allergic airways disease. Inhibition of ER stress responses may provide a potential therapeutic avenue in chronic asthma and sub-epithelial fibrosis associated with loss of lung function.


Assuntos
Apoptose , Brônquios/patologia , Estresse do Retículo Endoplasmático/fisiologia , Células Epiteliais/patologia , Fibrose Pulmonar/patologia , Fibrose Pulmonar/fisiopatologia , Pyroglyphidae/fisiologia , Fator 6 Ativador da Transcrição/deficiência , Fator 6 Ativador da Transcrição/efeitos dos fármacos , Fator 6 Ativador da Transcrição/genética , Animais , Brônquios/metabolismo , Brônquios/fisiopatologia , Caspase 3/metabolismo , Linhagem Celular , Células Cultivadas , Colágeno/metabolismo , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Células Epiteliais/fisiologia , Humanos , Técnicas In Vitro , Cloreto de Metacolina/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Isomerases de Dissulfetos de Proteínas/deficiência , Isomerases de Dissulfetos de Proteínas/efeitos dos fármacos , Isomerases de Dissulfetos de Proteínas/genética , Fibrose Pulmonar/metabolismo , RNA Interferente Pequeno/farmacologia
5.
J Immunol ; 191(12): 5811-21, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24227776

RESUMO

NF-κB activation within the epithelium has been implicated in the pathogenesis of asthma, yet the exact role of epithelial NF-κB in allergen-induced inflammation and airway remodeling remains unclear. In the current study, we used an intranasal house dust mite (HDM) extract exposure regimen time course in BALB/c mice to evaluate inflammation, NF-κB activation, airway hyperresponsiveness (AHR), and airway remodeling. We used CC10-IκBαSR transgenic mice to evaluate the functional importance of epithelial NF-κB in response to HDM. After a single exposure of HDM, mRNA expression of proinflammatory mediators was significantly elevated in lung tissue of wild-type (WT) mice, in association with increases in nuclear RelA and RelB, components of the classical and alternative NF-κB pathway, respectively, in the bronchiolar epithelium. In contrast, CC10-IκBαSR mice displayed marked decreases in nuclear RelA and RelB and mRNA expression of proinflammatory mediators compared with WT mice. After 15 challenges with HDM, WT mice exhibited increases in inflammation, AHR, mucus metaplasia, and peribronchiolar fibrosis. CC10-IκBαSR transgenic mice displayed marked decreases in neutrophilic infiltration, tissue damping, and elastance parameters, in association will less peribronchiolar fibrosis and decreases in nuclear RelB in lung tissue. However, central airway resistance and mucus metaplasia remained elevated in CC10-IκBαSR transgenic mice, in association with the continued presence of lymphocytes, and partial decreases in eosinophils and IL-13. The current study demonstrates that following airway exposure with an asthma-relevant allergen, activation of classical and alternative NF-κB pathways occurs within the airway epithelium and may coordinately contribute to allergic inflammation, AHR, and fibrotic airway remodeling.


Assuntos
Antígenos de Dermatophagoides/toxicidade , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/imunologia , Pulmão/imunologia , NF-kappa B/fisiologia , Pyroglyphidae/imunologia , Administração Intranasal , Remodelação das Vias Aéreas/imunologia , Animais , Antígenos de Dermatophagoides/administração & dosagem , Bronquíolos/patologia , Líquido da Lavagem Broncoalveolar/citologia , Linhagem Celular , Eosinófilos/imunologia , Epitélio/patologia , Fibrose , Humanos , Proteínas I-kappa B/genética , Mediadores da Inflamação/metabolismo , Interleucina-13/imunologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Linfócitos/imunologia , Macrófagos/imunologia , Metaplasia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Inibidor de NF-kappaB alfa , NF-kappa B/biossíntese , NF-kappa B/genética , Neutrófilos/imunologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Método Simples-Cego , Uteroglobina/genética
6.
J Cell Biochem ; 114(9): 1962-8, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23554102

RESUMO

Glutathione has traditionally been considered as an antioxidant that protects cells against oxidative stress. Hence, the loss of reduced glutathione and formation of glutathione disulfide is considered a classical parameter of oxidative stress that is increased in diseases. Recent studies have emerged that demonstrate that glutathione plays a more direct role in biological and pathophysiological processes through covalent modification to reactive cysteines within proteins, a process known as S-glutathionylation. The formation of an S-glutathionylated moiety within the protein can lead to structural and functional modifications. Activation, inactivation, loss of function, and gain of function have all been attributed to S-glutathionylation. In pathophysiological settings, S-glutathionylation is tightly regulated. This perspective offers a concise overview of the emerging field of protein thiol redox modifications. We will also cover newly developed methodology to detect S-glutathionylation in situ, which will enable further discovery into the role of S-glutathionylation in biology and disease.


Assuntos
Glutationa/metabolismo , Animais , Biotina/metabolismo , Glutarredoxinas/metabolismo , Humanos , Oxirredução , Compostos de Sulfidrila/metabolismo
7.
Am J Physiol Lung Cell Mol Physiol ; 303(6): L528-38, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22752969

RESUMO

Protein-S-glutathionylation (PSSG) is an oxidative modification of reactive cysteines that has emerged as an important player in pathophysiological processes. Under physiological conditions, the thiol transferase, glutaredoxin-1 (Glrx1) catalyses deglutathionylation. Although we previously demonstrated that Glrx1 expression is increased in mice with allergic inflammation, the impact of Glrx1/PSSG in the development of allergic airways disease remains unknown. In the present study we examined the impact of genetic ablation of Glrx1 in the pathogenesis of allergic inflammation and airway hyperresponsiveness (AHR) in mice. Glrx1(-/-) or WT mice were subjected to the antigen, ovalbumin (OVA), and parameters of allergic airways disease were evaluated 48 h after three challenges, and 48 h or 7 days after six challenges with aerosolized antigen. Although no clear increases in PSSG were observed in WT mice in response to OVA, marked increases were detected in lung tissue of mice lacking Glrx1 48 h following six antigen challenges. Inflammation and expression of proinflammatory mediators were decreased in Glrx1(-/-) mice, dependent on the time of analysis. WT and Glrx1(-/-) mice demonstrated comparable increases in AHR 48 h after three or six challenges with OVA. However, 7 days postcessation of six challenges, parameters of AHR in Glrx1(-/-) mice were resolved to control levels, accompanied by marked decreases in mucus metaplasia and expression of Muc5AC and GOB5. These results demonstrate that the Glrx1/S-glutathionylation redox status in mice is a critical regulator of AHR, suggesting that avenues to increase S-glutathionylation of specific target proteins may be beneficial to attenuate AHR.


Assuntos
Hiper-Reatividade Brônquica/imunologia , Glutarredoxinas/genética , Pulmão/patologia , Muco , Animais , Glutarredoxinas/deficiência , Glutationa/metabolismo , Pneumopatias/patologia , Metaplasia/patologia , Camundongos , Ovalbumina/imunologia , Pneumonia/etiologia , Proteínas/metabolismo
8.
Am J Respir Cell Mol Biol ; 47(4): 497-508, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22652196

RESUMO

The transcription factor NF-κB has been causally linked to inflammatory lung diseases. Recent studies have unraveled the complexity of NF-κB activation by identifying two parallel activation pathways: the classical NF-κB pathway, which is controlled by IκB kinase complex-ß (IKKß) and RelA/p50, and the alternative pathway, which is controlled by IKKα and RelB/p52. The alternative pathway regulates adaptive immune responses and lymphoid development, yet its role in the regulation of innate immune responses remains largely unknown. In this study, we determined the relevance of the alternative NF-κB pathway in proinflammatory responses in lung epithelial cells. The exposure of C10 murine alveolar lung epithelial cells to diverse stimuli, or primary murine tracheal epithelial cells to LPS, resulted in the activation of both NF-κB pathways, based on the nuclear translocation of RelA, p50, RelB, and p52. Increases in the nuclear content of RelA occurred rapidly, but transiently, whereas increases in nuclear RelB content were protracted. The small interfering (si) RNA-mediated knockdown of IKKα, RelA, or RelB resulted in decreases of multiple LPS-induced proinflammatory cytokines. Surprisingly, the siRNA ablation of IKKα or RelB led to marked increases in the production of IL-6 in response to LPS. The simultaneous expression of constitutively active (CA)-IKKα and CA-IKKß caused synergistic increases in proinflammatory mediators. Lastly, the disruption of the IKK signalsome inhibited the activation of both NF-κB pathways. These results demonstrate that the coordinated activation of both NF-κB pathways regulates the magnitude and nature of proinflammatory responses in lung epithelial cells.


Assuntos
Mediadores da Inflamação/metabolismo , NF-kappa B/metabolismo , Mucosa Respiratória/metabolismo , Transdução de Sinais , Animais , Anoctaminas , Células Cultivadas , Canais de Cloreto , Citocinas/genética , Citocinas/metabolismo , Citocinas/fisiologia , Expressão Gênica , Técnicas de Silenciamento de Genes , Histonas/metabolismo , Proteínas I-kappa B/genética , Proteínas I-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/genética , Cultura Primária de Células , Interferência de RNA , Mucosa Respiratória/imunologia , Mucosa Respiratória/patologia , Traqueia/patologia
9.
Am J Respir Cell Mol Biol ; 46(5): 573-81, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21799120

RESUMO

Influenza A virus (IAV) infection is known to induce endoplasmic reticulum (ER) stress, Fas-dependent apoptosis, and TGF-ß production in a variety of cells. However, the relationship between these events in murine primary tracheal epithelial cells (MTECS), which are considered one of the primary sites of IAV infection and replication, is unclear. We show that IAV infection induced ER stress marker activating transcription factor-6 and endoplasmic reticulum protein 57-kD (ERp57), but not C/EBP homologous protein (CHOP). In contrast, the ER stress inducer thapsigargin (THP) increased CHOP. IAV infection activated caspases and apoptosis, independently of Fas and caspase-8, in MTECs. Instead, apoptosis was mediated by caspase-12. A decrease in ERp57 attenuated the IAV burden and decreased caspase-12 activation and apoptosis in epithelial cells. TGF-ß production was enhanced in IAV-infected MTECs, compared with THP or staurosporine. IAV infection caused the activation of c-Jun N-terminal kinase (JNK). Furthermore, IAV-induced TGF-ß production required the presence of JNK1, a finding that suggests a role for JNK1 in IAV-induced epithelial injury and subsequent TGF-ß production. These novel findings suggest a potential mechanistic role for a distinct ER stress response induced by IAV, and a profibrogenic/repair response in contrast to other pharmacological inducers of ER stress. These responses may also have a potential role in acute lung injury, fibroproliferative acute respiratory distress syndrome, and the recently identified H1N1 influenza-induced exacerbations of chronic obstructive pulmonary disease (Wedzicha JA. Proc Am Thorac Soc 2004;1:115-120) and idiopathic pulmonary fibrosis (Umeda Y, et al. Int Med 2010;49:2333-2336).


Assuntos
Apoptose , Estresse do Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Vírus da Influenza A Subtipo H1N1/fisiologia , Pulmão/metabolismo , Infecções por Orthomyxoviridae/metabolismo , Animais , Caspase 12/metabolismo , Células Cultivadas , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/virologia , Ativação Enzimática , Ensaio de Imunoadsorção Enzimática , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Pulmão/patologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/patologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Mucosa Respiratória/virologia , Estaurosporina/farmacologia , Tapsigargina/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Carga Viral
10.
Free Radic Biol Med ; 51(6): 1249-57, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21762778

RESUMO

The transcription factor nuclear factor κB (NF-κB) is a critical regulator of inflammation and immunity and is negatively regulated via S-glutathionylation. The inhibitory effect of S-glutathionylation is overcome by glutaredoxin-1 (Grx1), which under physiological conditions catalyzes deglutathionylation and enhances NF-κB activation. The mechanisms whereby expression of the Glrx1 gene is regulated remain unknown. Here we examined the role of NF-κB in regulating activation of Glrx1. Transgenic mice that express a doxycycline-inducible constitutively active version of inhibitory κB kinase-ß (CA-IKKß) demonstrate elevated expression of Grx1. Transient transfection of CA-IKKß also resulted in significant induction of Grx1. A 2-kb region of the Glrx1 promoter that contains two putative NF-κB binding sites was activated by CA-IKKß, RelA/p50, and lipopolysaccharide (LPS). Chromatin immunoprecipitation experiments confirmed binding of RelA to the promoter of Glrx1 in response to LPS. Stimulation of C10 lung epithelial cells with LPS caused transient increases in Grx1 mRNA expression and time-dependent increases in S-glutathionylation of IKKß. Overexpression of Grx1 decreased S-glutathionylation of IKKß, prolonged NF-κB activation, and increased levels of proinflammatory mediators. Collectively, this study demonstrates that the Glrx1 gene is positively regulated by NF-κB and suggests a feed-forward mechanism to promote NF-κB signaling by decreasing S-glutathionylation.


Assuntos
Células Epiteliais/metabolismo , Glutarredoxinas/metabolismo , NF-kappa B/metabolismo , Animais , Linhagem Celular , Células Epiteliais/imunologia , Células Epiteliais/patologia , Regulação da Expressão Gênica/imunologia , Glutarredoxinas/genética , Glutarredoxinas/imunologia , Quinase I-kappa B/genética , Imunização , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/metabolismo , Pulmão/patologia , Camundongos , Camundongos Transgênicos , NF-kappa B/genética , Regiões Promotoras Genéticas/genética , Transdução de Sinais/genética , Fator de Transcrição RelA/metabolismo , Ativação Transcricional/genética , Transgenes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...