Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 17(12): 2530-2542, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30232146

RESUMO

Tumors use indoleamine 2,3-dioxygenase-1 (IDO1) as a major mechanism to induce an immunosuppressive microenvironment. IDO1 expression is upregulated in many cancers and considered to be a resistance mechanism to immune checkpoint therapies. IDO1 is induced in response to inflammatory stimuli such as IFNγ and promotes immune tolerance by depleting tryptophan and producing tryptophan catabolites, including kynurenine, in the tumor microenvironment. This leads to effector T-cell anergy and enhanced Treg function through upregulation of FoxP3. As a nexus for the induction of key immunosuppressive mechanisms, IDO1 represents an important immunotherapeutic target in oncology. Here, we report the identification and characterization of the novel selective, orally bioavailable IDO1 inhibitor EOS200271/PF-06840003. It reversed IDO1-induced T-cell anergy in vitro In mice carrying syngeneic tumor grafts, PF-06840003 reduced intratumoral kynurenine levels by over 80% and inhibited tumor growth both in monotherapy and, with an increased efficacy, in combination with antibodies blocking the immune checkpoint ligand PD-L1. We demonstrate that anti-PD-L1 therapy results in increased IDO1 metabolic activity thereby providing additional mechanistic rationale for combining PD-(L)1 blockade with IDO1 inhibition in cancer immunotherapies. Supported by these preclinical data and favorable predicted human pharmacokinetic properties of PF-06840003, a phase I open-label, multicenter clinical study (NCT02764151) has been initiated.


Assuntos
Antígeno B7-H1/antagonistas & inibidores , Biocatálise , Inibidores Enzimáticos/farmacologia , Imunoterapia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indóis/farmacologia , Succinimidas/farmacologia , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados , Antineoplásicos/farmacologia , Antígeno B7-H1/metabolismo , Antígeno CTLA-4/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Interferon gama/metabolismo , Cinurenina/sangue , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Estereoisomerismo , Especificidade por Substrato/efeitos dos fármacos , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos
2.
J Med Chem ; 60(23): 9617-9629, 2017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-29111717

RESUMO

Tumors use tryptophan-catabolizing enzymes such as indoleamine 2,3-dioxygenase (IDO-1) to induce an immunosuppressive environment. IDO-1 is induced in response to inflammatory stimuli and promotes immune tolerance through effector T-cell anergy and enhanced Treg function. As such, IDO-1 is a nexus for the induction of a key immunosuppressive mechanism and represents an important immunotherapeutic target in oncology. Starting from HTS hit 5, IDO-1 inhibitor 6 (EOS200271/PF-06840003) has been developed. The structure-activity relationship around 6 is described and rationalized using the X-ray crystal structure of 6 bound to human IDO-1, which shows that 6, differently from most of the IDO-1 inhibitors described so far, does not bind to the heme iron atom and has a novel binding mode. Clinical candidate 6 shows good potency in an IDO-1 human whole blood assay and also shows a very favorable ADME profile leading to favorable predicted human pharmacokinetic properties, including a predicted half-life of 16-19 h.


Assuntos
Inibidores Enzimáticos/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indóis/farmacologia , Succinimidas/farmacologia , Animais , Linhagem Celular , Cristalografia por Raios X , Cães , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/química , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Indóis/química , Indóis/farmacocinética , Macaca fascicularis , Masculino , Camundongos , Simulação de Acoplamento Molecular , Ratos , Relação Estrutura-Atividade , Succinimidas/química , Succinimidas/farmacocinética
3.
Front Immunol ; 8: 672, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28676801

RESUMO

B-1a cells are innate-like B-lymphocytes producing natural antibodies. Activation-induced cytidine deaminase (AID), a product of the Aicda gene, plays a central role in class-switch recombination and somatic hypermutation in B cells. Although a role for Aicda in B-1a cells has been suggested on the basis of experiments with knock out (KO) mice, whether B-1a cells express Aicda, and if so, which B-1a cell subpopulation expresses Aicda, remains unknown. Here, we demonstrate that B-1 cells express Aicda, but at a level below that expressed by germinal center (GC) B cells. We previously reported that B-1a cells can be subdivided based on CD25 expression. We show here that B-1a cell Aicda expression is concentrated in the CD25+ B-1a cell subpopulation. These results suggest the possibility that previous studies of memory B cells identified on the basis of Aicda expression may have inadvertently included an unknown number of CD25+ B-1a cells. Although B-1a cells develop normally in the absence of Aicda, a competitive reconstitution assay reveals enhanced vigor for AID KO B-1a cell bone marrow (BM) progenitors, as compared with wild-type BM B-1 cell progenitors. These results suggest that AID inhibits the development of B-1a cells from BM B-1 cell progenitors in a competitive environment.

4.
Front Immunol ; 2: 6, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22566797

RESUMO

B1 B cells defend against infectious microorganisms by spontaneous secretion of broadly reactive "natural" immunoglobulin that appears in the absence of immunization. Among many distinguishing characteristics, B1 B cells display evidence of activation that includes phosphorylated STAT3. In order to identify the origin of pSTAT3 we examined interleukin-2 receptor (IL-2R) expression on B1 cells. We found that some (about 1/5) B1a cells express the IL-2R α chain, CD25. Although lacking CD122 and unresponsive to IL-2, B1a cells marked by CD25 express increased levels of activated signaling intermediates, interruption of which results in diminished CD25. Further, CD25⁺ B1a cells contain most of the pSTAT3 found in the B1a population as a whole. Moreover, CD25⁺ B1a cells express leukemia inhibitory factor receptor (LIFR), and respond to LIF by upregulating pSTAT3. Together, these results define a new subset of B1a cells that is marked by activation-dependent CD25 expression, expresses substantial amounts of activated STAT3, and contains a functional LIFR.

5.
Eur J Immunol ; 40(11): 3007-16, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21061433

RESUMO

Peritoneal B1 cells are typified by spontaneous, constitutive secretion of IgM natural antibody, detected by ELISPOT assay, among other means. Recently, this key characteristic has been called into question, a reason for which we evaluated the integrity of IgM(+) ELISPOT spots. We found that fixed B1 cells fail to produce ELISPOT spots, that interference with Golgi function inhibits ELISPOT spot formation, and that B1 cell-derived immunoglobulin in supernatant samples is EndoH-resistant. These findings indicate that spots produced by B1 cells on ELISPOT assay reflect secretory IgM actively exported by viable B1 cells. Current paradigms propose that interferon response factor 4 (IRF4) is required for plasma cell differentiation and immunoglobulin secretion. However, we found that IgM secretion by peritoneal B1 cells is not altered in IRF4-null mice. In contrast, spontaneous IgM secretion by splenic B1 cells, which amounts to much more IgM secreted per cell, is dramatically reduced in the absence of IRF4. These results indicate that peritoneal B1 cells spontaneously secrete low levels of IgM via an IRF4-independent non-classical pathway, and, considering the low level of serum IgM in IRF-null mice, further suggest that accumulation of serum immunoglobulin depends on IRF4-dependent secretion by splenic B1 cells.


Assuntos
Subpopulações de Linfócitos B/imunologia , Imunoglobulina M/imunologia , Fatores Reguladores de Interferon/imunologia , Plasmócitos/imunologia , Animais , Subpopulações de Linfócitos B/citologia , Subpopulações de Linfócitos B/metabolismo , Diferenciação Celular/imunologia , Imunoglobulina M/metabolismo , Fatores Reguladores de Interferon/metabolismo , Camundongos , Camundongos Mutantes , Especificidade de Órgãos/imunologia , Peritônio/citologia , Peritônio/imunologia , Plasmócitos/citologia , Plasmócitos/metabolismo , Baço/citologia , Baço/imunologia
6.
Arthritis Rheum ; 60(12): 3734-43, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19950285

RESUMO

OBJECTIVE: B-1 cells have long been suggested to play an important role in lupus. However, reports to date have been controversial regarding their pathogenic or protective roles in different animal models. We undertook this study to investigate a novel subpopulation of B-1 cells and its roles in murine lupus. METHODS: Lymphocyte phenotypes were assessed by flow cytometry. Autoantibody secretion was analyzed by enzyme-linked immunosorbent assay, autoantigen proteome array, and antinuclear antibody assay. Cell proliferation was measured by thymidine incorporation and 5,6-carboxyfluorescein succinimidyl ester dilution. B cell Ig isotype switching was measured by enzyme-linked immunospot assay. RESULTS: Anti-double-stranded DNA (anti-dsDNA) autoantibodies were preferentially secreted by a subpopulation of CD5+ B-1 cells that expressed programmed death ligand 2 (termed L2pB1 cells). A substantial proportion of hybridoma clones generated from L2pB1 cells reacted to dsDNA. Moreover, these clones were highly cross-reactive with other lupus-related autoantigens. L2pB1 cells were potent antigen-presenting cells and promoted Th17 cell differentiation in vitro. A dramatic increase of circulating L2pB1 cells in lupus-prone BXSB mice was correlated with elevated serum titers of anti-dsDNA antibodies. A significant number of L2pB1 cells preferentially switched to IgG1 and IgG2b when stimulated with interleukin-21. CONCLUSION: Our findings identify a novel subpopulation of B-1 cells that is enriched for autoreactive specificities, undergoes isotype switch, manifests enhanced antigen presentation, promotes Th17 cell differentiation, and is preferentially associated with the development of lupus in a murine model. Together, these findings suggest that L2pB1 cells have the potential to initiate autoimmunity through serologic and T cell-mediated mechanisms.


Assuntos
Anticorpos Antinucleares/biossíntese , Autoimunidade/imunologia , Linfócitos B/metabolismo , Lúpus Eritematoso Sistêmico/imunologia , Animais , Anticorpos Antinucleares/sangue , Antígenos CD5/metabolismo , Proliferação de Células , DNA/imunologia , Modelos Animais de Doenças , Hibridomas , Switching de Imunoglobulina , Imunoglobulina G/imunologia , Interleucinas/farmacologia , Lúpus Eritematoso Sistêmico/sangue , Camundongos , Camundongos Endogâmicos BALB C , Peptídeos/metabolismo , Proteína 2 Ligante de Morte Celular Programada 1
7.
Mol Immunol ; 46(15): 3029-36, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19592097

RESUMO

B-1a cells constitutively express phosphorylated, activated ERK, but the origin of pERK in B-1 cells has not been determined. To address this issue, we examined specific mediators of intracellular signaling in unmanipulated B-1a cells. We found that constitutive pERK was rapidly lost from B-1a cells following addition of metabolic inhibitors that block src kinase, Syk, PI-3K, and PLC function. We examined Syk and PLC in more detail and found rapid accumulation of phosphorylated forms of these molecules in B-1a cells, but not B-2 cells, when phosphatase activity was inhibited, and this change occurred in the majority of B-1a cells. Further, we showed that inhibition of src kinase activity eliminated "downstream" pSyk and pPLC accumulation in phosphatase-inhibited B-1a cells, indicating a pathway connection. CD86 expression is greater on B-1 than B-2 cells and plays a role in antigen presentation by B-1 cells to T cells. We found that when Syk or PI-3K was inhibited, CD86 expression was diminished in a reversible fashion. All together, these results indicate that continual activation of intracellular signaling leads to constitutive activation of ERK in B-1 cells, with attendant consequences for co-stimulatory molecule expression.


Assuntos
Linfócitos B/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fosforilação/fisiologia , Transdução de Sinais/fisiologia , Animais , Linfócitos B/efeitos dos fármacos , Antígeno B7-2/efeitos dos fármacos , Antígeno B7-2/metabolismo , Antígenos CD5/metabolismo , Inibidores Enzimáticos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosfolipase C gama/antagonistas & inibidores , Fosfolipase C gama/metabolismo , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Quinase Syk , Vanadatos/farmacologia , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/metabolismo
8.
Mol Immunol ; 46(4): 587-91, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18952291

RESUMO

Classical BCR signaling requires a number of signalosome mediators that are bypassed when BCR signaling follows an alternate pathway produced by prior exposure of B cells to IL-4. The two pathways, classical and alternate, co-exist in IL-4-treated B cells. Here we report that operation of the IL-4-induced alternate pathway in combination with the classical pathway changes the nature of the B cell response to BCR engagement so that the cytokine, osteopontin (Opn), is produced and secreted. Although Opn expression by B cells has not previously been noted, anti-Ig-induced secretion by IL-4-treated B cells amounts to levels comparable to those secreted by activated T cells. However, unlike T cell Opn expression, B cell expression of Opn is not mediated by T-Bet. Because elevated levels of IL-4 occur in association with severe illness, and because Opn is strongly associated with autoimmunity, these results suggest that the IL-4-induced alternate BCR signaling pathway may participate in the pathophysiology of autoimmune dyscrasias.


Assuntos
Linfócitos B/imunologia , Interleucina-4/metabolismo , Osteopontina/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais/imunologia , Proteínas com Domínio T/metabolismo , Animais , Linfócitos B/metabolismo , Interleucina-4/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Osteopontina/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Proteínas com Domínio T/imunologia
9.
J Immunol ; 179(11): 7397-405, 2007 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-18025183

RESUMO

We have previously shown that rheumatoid factors produced by Fas-deficient autoimmune-prone mice typically bind autologous IgG2a with remarkably low affinity. Nevertheless, B cells representative of this rheumatoid factor population proliferate vigorously in response to IgG2a/chromatin immune complexes through a mechanism dependent on the sequential engagement of the BCR and TLR9. To more precisely address the role of both receptors in this response, we analyzed the signaling pathways activated in AM14 B cells stimulated with these complexes. We found that the BCR not only serves to direct the chromatin complex to an internal compartment where it can engage TLR9 but also transmits a suboptimal signal that in combination with the signals emanating from TLR9 leads to NF-kappaB activation and proliferation. Importantly, engagement of both receptors leads to the up-regulation of a group of gene products, not induced by the BCR or TLR9 alone, that include IL-2. These data indicate that autoreactive B cells, stimulated by a combination of BCR and TLR9 ligands, acquire functional properties that may contribute to the activation of additional cells involved in the autoimmune disease process.


Assuntos
Linfócitos B/imunologia , Cromatina/imunologia , Receptores de Antígenos de Linfócitos B/metabolismo , Receptor Toll-Like 9/metabolismo , Animais , Cálcio/metabolismo , Imunoglobulina G/imunologia , Interleucina-2/biossíntese , Ligantes , Camundongos , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/imunologia , Fosforilação , Transdução de Sinais/imunologia , Tirosina/metabolismo
10.
Eur J Immunol ; 37(9): 2405-10, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17683117

RESUMO

B1 B cells are the major source of natural antibody that is essential for innate immunity. The B1 repertoire is skewed toward production of phosphatidylcholine (PtC)-binding V(H)11 and V(H)12 immunoglobulin that plays a key role in immune defense against bacterial infection. Programmed death-ligand 2 (PD-L2) is a ligand for the immunosuppressive receptor programmed death-1 (PD-1). It has been reported that expression of PD-L2 is restricted to dendritic cells and macrophages in mice. Here we show that 50-70% of resting peritoneal B1 cells express PD-L2, which is not present or inducible on conventional B2 B cells or PD-L2(-) B1 cells. Although PD-L2(+) and PD-L2(-) B1 cells are similar in proliferative responses and spontaneous immunoglobulin secretion, PD-L2(+) B1 cells are highly enriched for expression of V(H)11 and V(H)12 genes and encompass the bulk of PtC-binding B1 cells. These findings extend the range of known PD-L2 expression to B cells and show that B1 cells identified by this marker express a specific repertoire associated with anti-bacterial immunity.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Região Variável de Imunoglobulina/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Peptídeos/metabolismo , Fosfatidilcolinas/imunologia , Animais , Células Cultivadas , Masculino , Camundongos , Proteína 2 Ligante de Morte Celular Programada 1
11.
Mol Immunol ; 44(13): 3407-15, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17382392

RESUMO

The kappa intronic and the kappa 3' enhancers synergize to regulate recombination and transcription of the Ig kappa locus. Although these enhancers have overlapping functions, the kappa i enhancer appears to predominate during receptor editing, while the kappa 3' enhancer may be more important for initiating Ig kappa germline transcription to target locus recombination and, later in development, somatic hypermutation. Changes in chromatin structure appear to regulate both enhancers, and previous reports suggest that both enhancers are packaged into an accessible chromatin structure only in B lineage cells. Why these enhancers cannot activate the demethylated, accessible, protein-associated Ig kappa allele in pro-B cells is not known. Furthermore, how the enhancers function to reactivate the locus for receptor editing or to quantitatively promote hypermutation in B cells is vague. Quantitative analysis of Ig enhancer chromatin structure in murine pro-, pre-and splenic B cells demonstrated that the kappa i enhancer maintains a highly accessible chromatin structure under a variety of conditions. This stable chromatin structure mirrored the highly accessible structure characterizing the Ig mu intronic enhancer, despite the fact that Ig mu is activated prior to Ig kappa during B cell development. Surprisingly, parallel analysis of the kappa 3' enhancer demonstrated its accessible chromatin structure is markedly unstable, as characterized by sensitivity to changes in environmental conditions. These data unexpectedly suggest that kappa locus regulation is compartmentalized along the gene in B lineage cells. Furthermore, these findings raise the possibility that environmentally dependent regulation of kappa 3' enhancer structure underlies changes in kappa activation during B cell development.


Assuntos
Cromatina/química , Cromatina/genética , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica/imunologia , Cadeias kappa de Imunoglobulina/genética , Animais , Subpopulações de Linfócitos B/citologia , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Cadeias mu de Imunoglobulina/genética , Camundongos , Camundongos Endogâmicos BALB C , Baço/citologia , Baço/imunologia , Baço/metabolismo
12.
Int Immunol ; 19(1): 59-65, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17135445

RESUMO

B-1 cells differ phenotypically, biochemically and functionally from conventional B-2 cells. The origin of these differences remains uncertain. We hypothesized that unbiased analysis of differences in protein expression between B-1 and B-2 cells might provide information not otherwise available, and thus undertook 1-dimensional (1D) gel analysis combined with mass spectrometry. We identified annexin II and S100A6 in peritoneal B-1 cells (B-1P) but not in splenic B-2 cells (B-2S); these results were confirmed by western blot analysis and reflected in mRNA expression. Further analysis of mRNA indicated that elevated expression levels of annexin II and S100A6 were unique to B-1P among several naive lymphoid populations. However, expression of annexin II and S100A6 protein was up-regulated in mitogenically stimulated B-2S. In both naive B-1 cells and stimulated B-2 cells, annexin II and S100A6 formed Ca++-sensitive complexes. These results confirm that the emerging field of proteomics detects differentially expressed molecules independently of RNA screening methods. These results identify two proteins (annexin II and S100A6) that are unexpectedly differentially expressed in B-1 cells and, although members of larger families, may fulfill unique, subset-specific functions. These results also validate 1D GE/LC-MS/MS as a reliable screening tool in identifying final protein product expression differences between B-1P and B-2S.


Assuntos
Anexina A2/metabolismo , Subpopulações de Linfócitos B/imunologia , Proteínas de Ciclo Celular/metabolismo , Peritônio/imunologia , Proteômica , Proteínas S100/metabolismo , Animais , Subpopulações de Linfócitos B/citologia , Células Cultivadas , Cromatografia Líquida , Eletroforese em Gel de Poliacrilamida , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos BALB C , Complexos Multiproteicos/metabolismo , Peritônio/citologia , Proteína A6 Ligante de Cálcio S100
13.
J Immunol ; 177(2): 787-95, 2006 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-16818732

RESUMO

Peritoneal B-1a cells differ from splenic B-2 cells in the molecular mechanisms that control G(0)-S progression. In contrast to B-2 cells, cyclin D2 is up-regulated in a rapid and transient manner in phorbol ester (PMA)-stimulated B-1a cells, whereas cyclin D3 does not accumulate until late G(1) phase. This nonoverlapping expression of cyclins D2 and D3 suggests distinct functions for these proteins in B-1a cells. To investigate the contribution of cyclin D3 in the proliferation of B-1a cells, we transduced p16(INK4a) peptidyl mimetics (TAT-p16) into B-1a cells before cyclin D3 induction to specifically block cyclin D3-cyclin-dependent kinase 4/6 assembly. TAT-p16 inhibited DNA synthesis in B-1a cells stimulated by PMA, CD40L, or LPS as well as endogenous pRb phosphorylation by cyclin D-cyclin-dependent kinase 4/6. Unexpectedly, however, cyclin D3-deficient B-1a cells proliferated in a manner similar to wild-type B-1a cells following PMA or LPS stimulation. This was due, at least in part, to the compensatory sustained accumulation of cyclin D2 throughout G(0)-S progression. Taken together, experiments in which cyclin D3 was inhibited in real time demonstrate the key role this cyclin plays in normal B-1a cell mitogenesis, whereas experiments with cyclin D3-deficient B-1a cells show that cyclin D2 can compensate for cyclin D3 loss in mutant mice.


Assuntos
Subpopulações de Linfócitos B/citologia , Proliferação de Células , Ciclinas/antagonistas & inibidores , Ciclinas/deficiência , Ciclinas/fisiologia , Inibidores do Crescimento , Sequência de Aminoácidos , Animais , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Ciclina D2 , Ciclina D3 , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/genética , Ciclinas/genética , Produtos do Gene tat/antagonistas & inibidores , Produtos do Gene tat/genética , Marcação de Genes , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Dados de Sequência Molecular , Peptídeos/antagonistas & inibidores , Peptídeos/genética , Fosforilação , Proteína do Retinoblastoma/metabolismo , Transdução Genética
14.
Eur J Immunol ; 36(5): 1114-23, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16609926

RESUMO

B-1 and B-2 cells are lymphocyte populations that differ in development, surface marker expression, tissue localization, and function. Though mainly found in the spleen, lymph nodes, and circulation of mice, small numbers of B-2 cells are found in the peritoneal cavity, a site predominantly populated by B-1 cells. Here, we characterized peritoneal B-2 cells, and determined their relationship to B-1 cells. We found that peritoneal B-2 cells appear to be intermediate between splenic B-2 and peritoneal B-1 cells in terms of surface marker expression of B220, CD80, and CD43, expression of several marker genes, and in vitro viability and IgM secretion. Adoptive transfer of peritoneal B-2 cells into severe combined immunodeficiency mice resulted in the acquisition of a phenotype reminiscent of B-1b cells, as shown by up-regulation of Mac-1 and CD43, and down-regulation of CD23. Moreover, adoptively transferred peritoneal B-2 cells recapitulated B-1 cell function by producing natural IgM in recipient mice. These data suggest that peritoneal B-2 cells express some characteristics of B-1b cells and that this similarity increases with additional time in the peritoneal cavity.


Assuntos
Subpopulações de Linfócitos B/fisiologia , Transferência Adotiva , Animais , Subpopulações de Linfócitos B/imunologia , Antígeno B7-1/análise , Perfilação da Expressão Gênica , Imunoglobulina M/biossíntese , Imunofenotipagem , Leucossialina/análise , Masculino , Camundongos , Camundongos Endogâmicos BALB C
15.
Immunol Lett ; 105(1): 90-6, 2006 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-16481048

RESUMO

The peritoneal cavity of mice is enriched for B-1 B cells, a lymphocyte subset that differs from conventional B-2 cells phenotypically, functionally, and developmentally. According to current paradigms, all peritoneal B-1 cells express Mac-1 whereas B-2 cells do not and thus these populations are often purified by FACS sorting or magnetic bead isolation based on B cell expression of Mac-1 or lack thereof. However, in the course of studying B220+/Mac-1- peritoneal B-2 cells, we discovered that this population is actually heterogeneous, with approximately 30-40% of these B220+/Mac-1- cells expressing the B-1 cell marker CD5. It was unclear whether this B220+/CD5+/Mac-1- peritoneal B cell population represented aberrantly CD5 expressing B-2 cells or Mac-1- B-1 cells. To address this issue we tested CD5+/Mac-1- peritoneal B cells for several traits that distinguish B-1 and B-2 cells. We found that CD5+/Mac-1- peritoneal B cells resembled CD5+ B-1 cells and not B-2 cells in terms of expression of several additional surface markers (IgM, IgD, CD23, CD43, and CD80). Further, CD5+/Mac-1- peritoneal B cells expressed high levels of V(H)11 and V(H)12, two Ig variable genes that are expressed mainly by B-1 but not B-2 cells. In addition, CD5+/Mac-1- peritoneal B cells responded to PMA, a mitogen that stimulates B-1 cells but not B-2 cells, and not to anti-Ig, that stimulates B-2 cells but not B-1 cells. ELISPOT analyses of freshly isolated CD5+/Mac-1- peritoneal B cells revealed that they secreted IgM constitutively, like B-1 cells and unlike B-2 cells. These results indicate that CD5+/Mac-1- peritoneal B cells are a new subset of B-1 cells, here termed B-1c, and stress the importance of using multiple surface markers to identify and purify specific B cell populations.


Assuntos
Subpopulações de Linfócitos B/imunologia , Animais , Subpopulações de Linfócitos B/citologia , Subpopulações de Linfócitos B/metabolismo , Sequência de Bases , Antígenos CD5/metabolismo , DNA Complementar/genética , Expressão Gênica , Genes de Imunoglobulinas , Imunoglobulina M/biossíntese , Antígeno de Macrófago 1/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Cavidade Peritoneal/citologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
16.
Mol Immunol ; 43(13): 2124-9, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16487589

RESUMO

B-1 cells constitute a unique B cell subset that differs phenotypically, biochemically, and functionally from the predominant population of conventional B-2 cells. Functional differences include constitutive secretion of natural immunoglobulin and failure of BCR signaling to initiate proliferation. The origin of these differences remains uncertain. We hypothesized that unbiased analysis of differences in protein expression between highly pure populations of B-1 and B-2 cells might provide information not readily available through other means. To pursue this, we undertook 2D gel analysis of B-1 and B-2 cells combined with mass spectrometry. We identified the smooth muscle protein, transgelin 2, in peritoneal (but not splenic) B-1 cells and did not find it in splenic B-2 cells; these results were confirmed by Western blot analysis, which showed a more than 60-fold difference in transgelin 2 expression between peritoneal B-1 and splenic B-2 cells. In contrast, levels of transgelin 2 RNA differed to a much lesser extent (3-fold) in the two B cell populations, so transgelin 2 is an example of a molecule whose subset-specific expression is more readily detected by proteomic than transcriptomic analyses. Finally, transgelin 2 protein expression was induced in splenic B-2 cells; thus, transgelin 2 joins a number of other inducible molecules that are constitutively expressed by peritoneal B-1 but not splenic B-2 cells. Although the role of transgelin 2 in B-1 cell function remains uncertain, identification of this molecule demonstrates the value of examining protein expression in this B cell subset.


Assuntos
Subpopulações de Linfócitos B/metabolismo , Regulação da Expressão Gênica , Proteínas dos Microfilamentos/biossíntese , Proteínas Musculares/biossíntese , Músculo Liso/metabolismo , Peritônio/metabolismo , Animais , Subpopulações de Linfócitos B/imunologia , Western Blotting , Regulação da Expressão Gênica/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas dos Microfilamentos/imunologia , Proteínas Musculares/imunologia , Músculo Liso/imunologia , Especificidade de Órgãos/imunologia , Peritônio/imunologia , Proteômica , Baço/imunologia , Baço/metabolismo
17.
Nat Genet ; 38(1): 27-37, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16311598

RESUMO

Tight regulation of transcription factors, such as PU.1, is crucial for generation of all hematopoietic lineages. We previously reported that mice with a deletion of an upstream regulatory element (URE) of the gene encoding PU.1 (Sfpi1) developed acute myeloid leukemia. Here we show that the URE has an essential role in orchestrating the dynamic PU.1 expression pattern required for lymphoid development and tumor suppression. URE deletion ablated B2 cells but stimulated growth of B1 cells in mice. The URE was a PU.1 enhancer in B cells but a repressor in T cell precursors. TCF transcription factors coordinated this repressor function and linked PU.1 to Wnt signaling. Failure of appropriate PU.1 repression in T cell progenitors with URE deletion disrupted differentiation and induced thymic transformation. Genome-wide DNA methylation assessment showed that epigenetic silencing of selective tumor suppressor genes completed PU.1-initiated transformation of lymphoid progenitors with URE deletion. These results elucidate how a single transcription factor, PU.1, through the cell context-specific activity of a key cis-regulatory element, affects the development of multiple cell lineages and can induce cancer.


Assuntos
Linfócitos/fisiologia , Proteínas Proto-Oncogênicas/genética , Sequências Reguladoras de Ácido Nucleico , Transativadores/genética , Animais , Linfócitos B/patologia , Linfócitos B/fisiologia , Transformação Celular Neoplásica/genética , Metilação de DNA , Regulação da Expressão Gênica , Linfócitos/patologia , Linfoma de Células T/genética , Linfoma de Células T/patologia , Camundongos , Camundongos SCID , Camundongos Transgênicos , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Células-Tronco/fisiologia , Fatores de Transcrição TCF/genética , Fatores de Transcrição TCF/metabolismo , Antígenos Thy-1/genética , Antígenos Thy-1/metabolismo , Timo/crescimento & desenvolvimento , Timo/fisiologia , Transativadores/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
18.
Acta Otolaryngol ; 126(1): 56-61, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16308256

RESUMO

CONCLUSION: B cells in cervical lymph nodes correspond to typical conventional B cells (B-2). OBJECTIVE: The special status of cervical lymph nodes in relation to the oropharynx, and the need to maintain the integrity of the oropharnygeal mucosal barrier, suggest the possibility that cervical lymph node B cells located in the oropharynx may behave differently from B cells located elsewhere. In this study we examined the symmetry or lack thereof between cervical lymph node B cells and other B-cell subsets. MATERIAL AND METHODS: We isolated B cells from murine cervical lymph node tissue and evaluated them in vitro according to several criteria. RESULTS: We found that cervical lymph node B cells expressed typical B-cell phenotypic markers and proliferated normally in response to mitogenic stimulation. They did not spontaneously secrete immunoglobulin and, in keeping with this, did not express elevated levels of either CD138 (Syndecan-1), a marker for plasma cells, or BLIMP-1, a putative master regulator of B-cell differentiation.


Assuntos
Linfócitos B/imunologia , Linfonodos/imunologia , Animais , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Expressão Gênica , Imunoglobulinas/biossíntese , Imunofenotipagem , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pescoço , Plasmócitos/metabolismo , Reação em Cadeia da Polimerase , RNA Mensageiro/análise
19.
J Immunol ; 175(1): 27-31, 2005 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15972627

RESUMO

B-1 cells constitute a unique B cell subset that is primarily responsible for producing nonimmune Ig. This natural Ig acts as a principal line of defense against infection. A key feature of B-1 cells is the failure of BCR-triggered signal transduction. Recently, defective BCR signaling in B-1 cells has been attributed to elevated expression of the canonical T cell src kinase, Lck. In the present study, we re-examined Lck expression in normal B-1 cells. We found that B-1 cells expressed less Lck at both the protein and RNA levels than did B-2 cells. The same B-1 cells manifested defective BCR-mediated induction of IKKbeta phosphorylation, IkappaBalpha degradation, and intracellular Ca(2+) mobilization. Thus, the failure of BCR signaling in B-1 cells does not relate to subset-specific elevation of Lck.


Assuntos
Subpopulações de Linfócitos B/enzimologia , Subpopulações de Linfócitos B/imunologia , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/deficiência , Animais , Sequência de Bases , Sinalização do Cálcio , DNA Complementar/genética , Quinase I-kappa B , Proteínas I-kappa B/metabolismo , Técnicas In Vitro , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Inibidor de NF-kappaB alfa , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais
20.
Cell Immunol ; 234(1): 39-53, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15963483

RESUMO

We are reporting the identification of a novel C-type lectin receptor-ligand pair that is involved in T cell costimulation. The receptor, OCILRP2/Clr-g, is rapidly induced following T cell activation and maintained at a substantial level of up to 72 h. The ligand, NKRP1f, is predominantly expressed on dendritic cells (DC). The soluble OCILRP2-Ig blocking protein significantly suppresses specific antigen-stimulated T cell proliferation as well as IL-2 secretion both in vitro and in vivo; conversely, NKRP1f-expressing antigen presenting cells (APC) enhance B7.1/CD28-mediated costimulation for T cell proliferation through interaction with OCILRP2/Clr-g. Our studies reveal a unique functional interaction between two C-type lectins, OCILRP2/Clr-g and NKRP1f, during APC-mediated T cell costimulation and suggest a role for C-type lectins in maintaining T cell response or memory in vivo.


Assuntos
Interleucina-2/biossíntese , Lectinas Tipo C/metabolismo , Proteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo , Animais , Células Cultivadas , Células Dendríticas , Regulação da Expressão Gênica , Humanos , Interleucina-2/metabolismo , Cinética , Lectinas Tipo C/genética , Ligantes , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Splicing de RNA , Receptores Imunológicos/genética , Baço/citologia , Baço/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...