Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 10: 1287676, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38111731

RESUMO

Proteins assist sperm mature, transit the female reproductive tract, and recognise sperm oocytes. Indigenous Indonesian bulls, Madura bulls, have not been studied for reproductive proteomics. As local Indonesian beef livestock, Madura cattle assist in achieving food security; hence, their number must be improved. Thus, the identification of molecular proteomics-based bull fertility biomarkers is needed. This study aimed to characterise the sperm fertility function of the superior Madura bull (Bos indicus × Bos Javanicus) spermatozoa proteome. Frozen semen from eight Madura superior bulls (Bos indicus × Bos javanicus) aged 4-8 years was obtained from the artificial insemination centre (AIC) in Singosari and Lembang. Madura superior bulls are those that have passed the bull breeding soundness evaluation. Frozen sperm were thawed and centrifuged at 3000 × g for 30 min. Proteins in sperm were characterised through proteomic analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The resulting gene symbols for each protein were then subjected to bioinformatics tools, including UniProt, DAVID, and STRING databases. Regarding sperm fertility, the analysis revealed that 15 proteins were identified in the sperm of Madura bulls. Amongst the identified proteins, the superior Madura bull sperm contained several motilities, energy-related proteins, and chaperone proteins. A substantial portion of characterised proteins are linked to metabolic pathways and the tricarboxylic acid (TCA) cycle, contributing to sperm energy production. In conclusion, the first in-depth proteome identification of sperm related to sperm quality and bull fertility of a unique indigenous Madura breed of Indonesia was performed using the LC-MS/MS proteomic method. These findings may serve as a reference point for further studies related to the functions of bovine sperm and biomarkers of fertility and sperm quality.

2.
Anim Biosci ; 36(12): 1796-1805, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37402446

RESUMO

OBJECTIVE: This study aims to identify heat shock protein70-2 (HSP70-2) and protamine-1 (PRM1) mRNA and protein in Madura bull sperm and demonstrate their relation as bull fertility biomarkers. METHODS: The Madura bull fertility rates were grouped based on the percentage of first service conception rate (%FSCR) as high fertility (HF) (79.04%; n = 4), and low fertility (LF) (65.84%; n = 4). mRNA of HSP70-2 and PRM1 with peptidylprolyl isomerase A (PPIA) as a housekeeping gene were determined by quantitative real-time polymerase chain reaction, while enzyme-linked immunoassay was used to measure protein abundance. In the post-thawed semen samples, sperm motility, viability, acrosome integrity, and sperm DNA fragmentation index were analyzed. Data analysis was performed on the measured parameters of semen quality, relative mRNA expression, and protein abundance of HSP70-2 and PRM1, among the bulls with various fertility levels (HF and LF) in a one-way analysis of variance analysis. The Pearson correlation was used to analyze the relationship between semen quality, mRNA, proteins, and fertility rate. RESULTS: Relative mRNA expression and protein abundance of HSP70-2 and PRM1 were detected and were found to be highly expressed in bulls with HF (p<0.05) and were associated with several parameters of semen quality. CONCLUSION: HSP70-2 and PRM1 mRNA and protein molecules have great potential to serve as molecular markers for determining bull fertility.

3.
Vet World ; 15(6): 1456-1466, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35993069

RESUMO

Heat shock protein 70 (HSP70) is one of the most abundant chaperone proteins. Their function is well documented in facilitating the protein synthesis, translocation, de novo folding, and ordering of multiprotein complexes. HSP70 in bovine consists of four genes: HSP70-1, HSP70-2, HSP70-3, and HSP70-4. HSP70-2 was found to be involved in fertility. Current knowledge implicates HSP70-2 in sperm quality, sperm capacitation, sperm-egg recognition, and fertilization essential for bull reproduction. HSP70-2 is also involved in the biological processes of spermatogenesis, as it protects cells from the effects of apoptosis and oxidative stress. Fertilization success is not only determined by the amount of sperm found in the female reproductive tract but also by the functional ability of the sperm. However, subfertility is more likely to be associated with changes in sperm molecular dynamics not detectable using conventional methods. As such, molecular analyses and omics methods have been developed to monitor crucial aspects of sperm molecular morphology that are important for sperm functions, which are the objectives of this review.

4.
Vet World ; 13(5): 947-955, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32636592

RESUMO

BACKGROUND AND AIM: Holstein cows and heifers are widely bred in Indonesia by artificial insemination (AI) to increase population and milk production. Sperm fertility is modulated by genetic factors, but the analysis of sperm quality is still based on macro- and microscopic characteristics. This study aimed to analyze both sperm quality and proteins of Holstein bulls at different fertility levels. MATERIALS AND METHODS: The frozen semen samples were collected from the Indonesia National AI Center. They were classified based on the reproductive efficiency data and were grouped into high fertile (HF) and low fertile (LF). Sperm qualities were evaluated by microscopic evaluation. The Holstein sperm proteins were extracted using phenylmethanesulfonyl fluoride as a protease inhibitor and the benzidine detergent extraction method. Discontinuous sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was conducted to analyze the molecular weights (MWs) of the sperm proteins. The data obtained were analyzed by a t-test using the one-factor bull fertility level, and Spearman's correlation analysis was used to identify the correlation between the sperm microscopic evaluation parameters and protein bands. RESULTS: The sperm motility post-freeze thawing was not significantly different between the HF and LF (p>0.05). The HF level had a higher percentage of viability, intact plasma membrane integrity, and intact acrosomes than the LF (p<0.05). Five protein bands were found in the SDS-PAGE of sperm proteins of Holstein bulls with different concentrations. Sperm proteins with MWs of 17.51 kDa, 14.87 kDa, 33.71 kDa, and 41.97 kDa were abundant in the Holstein bulls with an HF level, while 55 kDa proteins were abundant in the LF level of Holstein bulls. The sperm of Holstein bulls in the HF level contained proteins of about 33.71 kDa that were not detected in the LF. CONCLUSION: The sperm protein with a molecular weight of 33.71 kDa was predicted to be a specific protein biomarker that influences bull fertility. Sperm fertilization abilities were also determined by the sperm proteins, the morphology of sperm acrosomes, and the quality of plasma membranes. This method can be used to select bulls with high fertility to increase the population of Holstein bulls.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA