Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 407(6800): 106-10, 2000 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-10993083

RESUMO

The formation of aminoacyl-transfer RNA is a crucial step in ensuring the accuracy of protein synthesis. Despite the central importance of this process in all living organisms, it remains unknown how archaea and some bacteria synthesize Asn-tRNA and Gln-tRNA. These amide aminoacyl-tRNAs can be formed by the direct acylation of tRNA, catalysed by asparaginyl-tRNA synthetase and glutaminyl-tRNA synthetase, respectively. A separate, indirect pathway involves the formation of mis-acylated Asp-tRNA(Asn) or Glu-tRNA(Gln), and the subsequent amidation of these amino acids while they are bound to tRNA, which is catalysed by amidotransferases. Here we show that all archaea possess an archaea-specific heterodimeric amidotransferase (encoded by gatD and gatE) for Gln-tRNA formation. However, Asn-tRNA synthesis in archaea is divergent: some archaea use asparaginyl-tRNA synthetase, whereas others use a heterotrimeric amidotransferase (encoded by the gatA, gatB and gatC genes). Because bacteria primarily use transamidation, and the eukaryal cytoplasm uses glutaminyl-tRNA synthetase, it appears that the three domains use different mechanisms for Gln-tRNA synthesis; as such, this is the only known step in protein synthesis where all three domains have diverged. Closer inspection of the two amidotransferases reveals that each of them recruited a metabolic enzyme to aid its function; this provides direct evidence for a relationship between amino-acid metabolism and protein biosynthesis.


Assuntos
Amidas/metabolismo , Aminoácidos/metabolismo , Archaea/metabolismo , Transferases de Grupos Nitrogenados/metabolismo , Biossíntese Peptídica , Aminoacil-RNA de Transferência/metabolismo , Archaea/enzimologia , Archaea/genética , Clonagem Molecular , Escherichia coli , Methanobacterium/enzimologia , Methanobacterium/genética , Transferases de Grupos Nitrogenados/genética , Estrutura Terciária de Proteína
2.
Trends Biochem Sci ; 25(7): 311-6, 2000 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10871880

RESUMO

As originally postulated in Crick's Adaptor hypothesis, the faithful synthesis of proteins from messenger RNA is dependent on the presence of perfectly acylated tRNAs. The hypothesis also suggested that each aminoacyl-tRNA would be made by a unique enzyme. Recent data have now forced a revision of this latter point, with an increasingly diverse array of enzymes and pathways being implicated in aminoacyl-tRNA synthesis. These unexpected findings have far-reaching implications for our understanding of protein synthesis and its origins.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , RNA de Transferência Aminoácido-Específico/metabolismo , Aminoacil-tRNA Sintetases/classificação , Aminoacil-tRNA Sintetases/genética , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Evolução Molecular , Lisina-tRNA Ligase/classificação , Lisina-tRNA Ligase/metabolismo , Modelos Genéticos , Filogenia , Biossíntese de Proteínas , RNA de Transferência Aminoácido-Específico/biossíntese , RNA de Transferência Aminoácido-Específico/genética , Especificidade por Substrato
3.
J Bacteriol ; 182(1): 143-5, 2000 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-10613873

RESUMO

The pathway of cysteine biosynthesis in archaea is still unexplored. Complementation of a cysteine auxotrophic Escherichia coli strain NK3 led to the isolation of the Methanosarcina barkeri cysK gene [encoding O-acetylserine (thiol)-lyase-A], which displays great similarity to bacterial cysK genes. Adjacent to cysK is an open reading frame orthologous to bacterial cysE (serine transacetylase) genes. These two genes could account for cysteine biosynthesis in this archaeon. Analysis of recent genome data revealed the presence of bacteria-like cysM genes [encoding O-acetylserine (thiol)-lyase-B] in Pyrococcus spp., Sulfolobus solfataricus, and Thermoplasma acidophilum. However, no orthologs for these genes can be found in Methanococcus jannaschii, Methanobacterium thermoautotrophicum, and Archaeoglobus fulgidus, implying the existence of unrecognizable genes for the same function or a different cysteine biosynthesis pathway.


Assuntos
Acetiltransferases , Proteínas Arqueais/genética , Proteínas de Bactérias/genética , Cisteína Sintase/genética , Cisteína/biossíntese , Methanosarcina/metabolismo , Proteínas Arqueais/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína Sintase/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli , Teste de Complementação Genética , Methanosarcina/genética , Dados de Sequência Molecular , Filogenia , Serina O-Acetiltransferase
4.
Mol Microbiol ; 33(1): 1-7, 1999 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10411718

RESUMO

Although the genomic sequences of a number of Archaea have been completed in the last three years, genetic systems in the sequenced organisms are absent. In contrast, genetic studies of the mesophiles in the archaeal genus Methanococcus have become commonplace following the recent developments of antibiotic resistance markers, DNA transformation methods, reporter genes, shuttle vectors and expression vectors. These developments have led to investigations of the transcription of the genes for hydrogen metabolism, nitrogen fixation and flagellin assembly. These genetic systems can potentially be used to analyse the genomic sequence of the hyperthermophile Methanococcus jannaschii, addressing questions of its physiology and the function of its many uncharacterized open reading frames. Thus, the sequence of M. jannaschii can serve as a starting point for gene isolation, while in vivo genetics in the mesophilic methanococci can provide the experimental systems to test the predictions from genomics.


Assuntos
Archaea/genética , Genoma Bacteriano , Mathanococcus/genética , Anaerobiose , Proteínas de Bactérias/genética , DNA Bacteriano/genética , Resistência Microbiana a Medicamentos , Flagelos/metabolismo , Previsões , Genes Bacterianos , Genes Reporter , Vetores Genéticos/genética , Genética Microbiana/métodos , Fixação de Nitrogênio/genética , Seleção Genética , Análise de Sequência de DNA
6.
Proc Natl Acad Sci U S A ; 95(22): 12838-43, 1998 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-9789001

RESUMO

Asparaginyl-tRNA (Asn-tRNA) and glutaminyl-tRNA (Gln-tRNA) are essential components of protein synthesis. They can be formed by direct acylation by asparaginyl-tRNA synthetase (AsnRS) or glutaminyl-tRNA synthetase (GlnRS). The alternative route involves transamidation of incorrectly charged tRNA. Examination of the preliminary genomic sequence of the radiation-resistant bacterium Deinococcus radiodurans suggests the presence of both direct and indirect routes of Asn-tRNA and Gln-tRNA formation. Biochemical experiments demonstrate the presence of AsnRS and GlnRS, as well as glutamyl-tRNA synthetase (GluRS), a discriminating and a nondiscriminating aspartyl-tRNA synthetase (AspRS). Moreover, both Gln-tRNA and Asn-tRNA transamidation activities are present. Surprisingly, they are catalyzed by a single enzyme encoded by three ORFs orthologous to Bacillus subtilis gatCAB. However, the transamidation route to Gln-tRNA formation is idled by the inability of the discriminating D. radiodurans GluRS to produce the required mischarged Glu-tRNAGln substrate. The presence of apparently redundant complete routes to Asn-tRNA formation, combined with the absence from the D. radiodurans genome of genes encoding tRNA-independent asparagine synthetase and the lack of this enzyme in D. radiodurans extracts, suggests that the gatCAB genes may be responsible for biosynthesis of asparagine in this asparagine prototroph.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Asparagina/biossíntese , Cocos Gram-Positivos/enzimologia , Transferases de Grupos Nitrogenados/metabolismo , Acilação , Clonagem Molecular , DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Glutamato-tRNA Ligase/metabolismo , Cocos Gram-Positivos/genética , Cinética , Modelos Químicos , Fases de Leitura Aberta
7.
J Bacteriol ; 179(19): 6010-3, 1997 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9324245

RESUMO

An acetate-requiring mutant of Methanococcus maripaludis allowed efficient labeling of riboses following growth in minimal medium supplemented with [2-(13)C]acetate. Nuclear magnetic resonance and mass spectroscopic analysis of purified cytidine and uridine demonstrated that the C-1' of the ribose was about 67% enriched for 13C. This value was inconsistent with the formation of erythrose 4-phosphate (E4P) exclusively by the carboxylation of a triose. Instead, these results suggest that either (i) E4P is formed by both the nonoxidative pentose phosphate and triose carboxylation pathways or (ii) E4P is formed exclusively by the nonoxidative pentose phosphate pathway and is not a precursor of aromatic amino acids.


Assuntos
Aminoácidos/biossíntese , Mathanococcus/metabolismo , Ribose/biossíntese , Acetatos/metabolismo , Meios de Cultura , Citidina/metabolismo , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Via de Pentose Fosfato , Fosfatos Açúcares/metabolismo , Uridina/metabolismo
8.
J Bacteriol ; 179(9): 2976-86, 1997 May.
Artigo em Inglês | MEDLINE | ID: mdl-9139917

RESUMO

The complete sequence of the 8,285-bp plasmid pURB500 from Methanococcus maripaludis C5 was determined. Sequence analysis identified 18 open reading frames as well as two regions of potential iterons and complex secondary structures. The shuttle vector, pDLT44, for M. maripaludis JJ was constructed from the entire pURB500 plasmid and pMEB.2, an Escherichia coli vector containing a methanococcal puromycin-resistance marker (P. Gernhardt, O. Possot, M. Foglino, L. Sibold, and A. Klein, Mol. Gen. Genet. 221:273-279, 1990). By using polyethylene glycol transformation, M. maripaludis JJ was transformed at a frequency of 3.3 x 10(7) transformants per microg of pDLT44. The shuttle vector was stable in E. coli under ampicillin selection but was maintained at a lower copy number than pMEB.2. Based on the inability of various restriction fragments of pURB500 to support maintenance in M. maripaludis JJ, multiple regions of pURB500 were required. pDLT44 did not replicate in Methanococcus voltae.


Assuntos
Mathanococcus/genética , Plasmídeos , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Replicação do DNA , Escherichia coli/genética , Marcadores Genéticos , Vetores Genéticos , Dados de Sequência Molecular , Fases de Leitura Aberta , Proteínas Recombinantes/biossíntese , Sequências Repetitivas de Ácido Nucleico , Mapeamento por Restrição , Especificidade da Espécie
9.
Gene ; 188(1): 77-84, 1997 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-9099862

RESUMO

The gene for acetohydroxyacid synthase (AHAS) was cloned from the archaeon Methanococcus aeolicus. Contrary to biochemical studies [Xing, R. and Whitman, W.B. (1994) J. Bacteriol. 176, 1207-1213] the enzyme was encoded by two open reading frames (ORFs). Based on sequence homology, these ORFs were designated ilvB and ilvN for the large and small subunits of AHAS, respectively. A putative methanogen promoter preceded ilvB-ilvN, and a potential internal promoter was found upstream of ilvN. ilvB encoded a 65-kDa protein, which agreed well with the measured value for the purified enzyme. ilvN encoded a 19-kDa protein, which fell within the range of M(r) of small subunits from other sources. Phylogenetic analysis of the deduced amino acid sequence of ilvB showed a close relationship between the AHAS of Bacteria and Archaea, to the exclusion of other enzymes in this family, including pyruvate oxidase, glyoxylate carboligase, pyruvate decarboxylase, and the acetolactate synthase found in fermentative Bacteria. Thus, this family of enzymes probably arose prior to the divergence of the Bacteria and Archaea. Moreover, the higher plant AHAS and the red algal AHAS were related to the AHAS II of Escherichia coli and the cyanobacterial AHAS, respectively. For this reason, these genes appear to have been acquired by the Eucarya during the endosymbiosis that gave rise to the mitochondrion and chloroplast, respectively. One of the ORFs in the Methanococcus jannaschii genome possesses high similarity to the M. aeolicus ilvB, indicating that it is an authentic AHAS.


Assuntos
Acetolactato Sintase/genética , Proteínas de Bactérias/genética , Mathanococcus/enzimologia , Acetolactato Sintase/classificação , Sequência de Aminoácidos , Proteínas de Bactérias/classificação , Sequência de Bases , Clonagem Molecular , DNA Bacteriano , Genes Bacterianos , Mathanococcus/genética , Dados de Sequência Molecular , Filogenia
10.
Biofactors ; 6(1): 37-46, 1997.
Artigo em Inglês | MEDLINE | ID: mdl-9233538

RESUMO

Methanococcus maripaludis is a strict anaerobe that utilizes H2 or formate as an electron donor for CO2 reduction to methane. Recent progress in development of genetic systems in this archaebacterium makes it an excellent model system for molecular and biochemical studies. This progress includes development of methods for growth on solid medium, enriching auxotrophic mutants, efficient transformation, and random insertional inactivation of genes. Genetic markers for both puromycin and neomycin resistance are available. Lastly, a shuttle vector has been constructed from a cryptic methanococcal plasmid. These technical advances made it possible to utilize genetic approaches for the study of autotrophic CO2 assimilation in methanococci.


Assuntos
Metano/metabolismo , Mathanococcus/genética , Mathanococcus/metabolismo , Ácido Acético/farmacologia , Dióxido de Carbono/metabolismo , Resistência Microbiana a Medicamentos/genética , Formiatos/metabolismo , Marcadores Genéticos , Hidrogênio/metabolismo , Mathanococcus/crescimento & desenvolvimento , Mutagênese , Neomicina
11.
Appl Environ Microbiol ; 62(11): 4233-7, 1996 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-8900017

RESUMO

We cloned the aminoglycoside phosphotransferase genes APH3'I and APH3'II between the Methanococcus voltae methyl reductase promoter and terminator in a plasmid containing a fragment of Methanococcus maripaludis chromosomal DNA. The resulting plasmids encoding neomycin resistance transformed M. maripaludis at frequencies similar to those observed for pKAS102 encoding puromycin resistance. The antibiotic geneticin was not inhibitory to M. maripaludis.


Assuntos
Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Mathanococcus/efeitos dos fármacos , Mathanococcus/genética , Neomicina/farmacologia , Clonagem Molecular , Genes Bacterianos , Marcadores Genéticos , Canamicina Quinase , Mathanococcus/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Plasmídeos/genética , Regiões Promotoras Genéticas , Regiões Terminadoras Genéticas , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA