Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39091842

RESUMO

Meniscus injuries pose significant challenges in clinical settings, primarily due to the intrinsic heterogeneity of the tissue and the limited efficacy of current treatments. Endogenous cell migration is crucial for the healing process, yet the regulatory mechanisms of meniscus cell migration and its zonal dependency within the meniscus are not fully understood. Thus, this study investigates the role of epigenetic mechanisms in governing meniscus cell migration under inflammatory conditions, with a focus on their implications for injury healing and regeneration. Here, we discovered that a proinflammatory cytokine, TNF-α treatment significantly impedes the migration speed of inner meniscus cells, while outer meniscus cells are unaffected, underscoring a zonal-dependent response within the meniscus. Our analysis identified distinct histone modification patterns and chromatin dynamics between inner and outer meniscus cells during migration, highlighting the necessity to consider these zonal-dependent properties in devising repair strategies. Specifically, we found that TNF-α differentially influences histone modifications, particularly H3K27me3, between the two cell types. Transcriptome analysis further revealed that TNF-α treatment induces substantial gene expression changes, with inner meniscus cells exhibiting more pronounced alterations than outer cells. Gene cluster analysis pointed to distinct responses in chromatin remodeling, extracellular matrix assembly, and wound healing processes between the zonal cell populations. Moreover, we identified potential therapeutic targets by employing existing epigenetic drugs, GSKJ4 (a histone demethylase inhibitor) and C646 (a histone acetyltransferase inhibitor), to successfully restore the migration speed of inner meniscus cells under inflammatory conditions. This highlights their potential utility in treating meniscus tear injuries. Overall, our findings elucidate the intricate interplay between epigenetic mechanisms and meniscus cell migration, along with its meniscus zonal dependency. This study provides insights into potential targets for enhancing meniscus repair and regeneration, which may lead to improved clinical outcomes for patients with meniscus injuries and osteoarthritis.

2.
J Biol Chem ; 300(7): 107460, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38876306

RESUMO

Obesity is a major risk factor for liver and cardiovascular diseases. However, obesity-driven mechanisms that contribute to the pathogenesis of multiple organ diseases are still obscure and treatment is inadequate. We hypothesized that increased , glucose-6-phosphate dehydrogenase (G6PD), the key rate-limiting enzyme in the pentose shunt, is critical in evoking metabolic reprogramming in multiple organs and is a significant contributor to the pathogenesis of liver and cardiovascular diseases. G6PD is induced by a carbohydrate-rich diet and insulin. Long-term (8 months) high-fat diet (HFD) feeding increased body weight and elicited metabolic reprogramming in visceral fat, liver, and aorta, of the wild-type rats. In addition, HFD increased inflammatory chemokines in visceral fat. Interestingly, CRISPR-edited loss-of-function Mediterranean G6PD variant (G6PDS188F) rats, which mimic human polymorphism, moderated HFD-induced weight gain and metabolic reprogramming in visceral fat, liver, and aorta. The G6PDS188F variant prevented HFD-induced CCL7 and adipocyte hypertrophy. Furthermore, the G6PDS188F variant increased Magel2 - a gene encoding circadian clock-related protein that suppresses obesity associated with Prader-Willi syndrome - and reduced HFD-induced non-alcoholic fatty liver. Additionally, the G6PDS188F variant reduced aging-induced aortic stiffening. Our findings suggest G6PD is a regulator of HFD-induced obesity, adipocyte hypertrophy, and fatty liver.


Assuntos
Adipócitos , Dieta Hiperlipídica , Fígado Gorduroso , Glucosefosfato Desidrogenase , Hipertrofia , Obesidade , Animais , Glucosefosfato Desidrogenase/metabolismo , Glucosefosfato Desidrogenase/genética , Masculino , Ratos , Obesidade/metabolismo , Obesidade/genética , Obesidade/patologia , Obesidade/etiologia , Dieta Hiperlipídica/efeitos adversos , Adipócitos/metabolismo , Adipócitos/patologia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Fígado/metabolismo , Fígado/patologia , Ratos Sprague-Dawley , Gordura Intra-Abdominal/metabolismo , Gordura Intra-Abdominal/patologia
3.
bioRxiv ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38293187

RESUMO

Cellular metabolism is influenced by the stiffness of the extracellular matrix. Focal adhesion kinase (FAK) and its binding partner, p130Cas, transmit biomechanical signals about substrate stiffness to the cell to regulate a variety of cellular responses, but their roles in early transcriptional and metabolic responses remain largely unexplored. We cultured mouse embryonic fibroblasts with or without siRNA-mediated FAK or p130Cas knockdown and assessed the early transcriptional responses of these cells to placement on soft and stiff substrates by RNA sequencing and bioinformatics analyses. Exposure to the stiff ECM altered the expression of genes important for metabolic and biosynthetic processes, and these responses were influenced by knockdown of FAK and p130Cas. Our findings reveal that FAK-p130Cas signaling mechanotransduces ECM stiffness to early transcriptional changes that alter cellular metabolism and biosynthesis.

4.
APL Bioeng ; 7(4): 046108, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37915752

RESUMO

Stiffened arteries are a pathology of atherosclerosis, hypertension, and coronary artery disease and a key risk factor for cardiovascular disease events. The increased stiffness of arteries triggers a phenotypic switch, hypermigration, and hyperproliferation of vascular smooth muscle cells (VSMCs), leading to neointimal hyperplasia and accelerated neointima formation. However, the mechanism underlying this trigger remains unknown. Our analyses of whole-transcriptome microarray data from mouse VSMCs cultured on stiff hydrogels simulating arterial pathology identified 623 genes that were significantly and differentially expressed (360 upregulated and 263 downregulated) relative to expression in VSMCs cultured on soft hydrogels. Functional enrichment and gene network analyses revealed that these stiffness-sensitive genes are linked to cell cycle progression and proliferation. Importantly, we found that survivin, an inhibitor of apoptosis protein, mediates stiffness-dependent cell cycle progression and proliferation as determined by gene network and pathway analyses, RT-qPCR, immunoblotting, and cell proliferation assays. Furthermore, we found that inhibition of cell cycle progression did not reduce survivin expression, suggesting that survivin functions as an upstream regulator of cell cycle progression and proliferation in response to ECM stiffness. Mechanistically, we found that the stiffness signal is mechanotransduced via the FAK-E2F1 signaling axis to regulate survivin expression, establishing a regulatory pathway for how the stiffness of the cellular microenvironment affects VSMC behaviors. Overall, our findings indicate that survivin is necessary for VSMC cycling and proliferation and plays a role in regulating stiffness-responsive phenotypes.

5.
APL Bioeng ; 7(4): 046104, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37868708

RESUMO

Vascular dysfunction is a common cause of cardiovascular diseases characterized by the narrowing and stiffening of arteries, such as atherosclerosis, restenosis, and hypertension. Arterial narrowing results from the aberrant proliferation of vascular smooth muscle cells (VSMCs) and their increased synthesis and deposition of extracellular matrix (ECM) proteins. These, in turn, are modulated by arterial stiffness, but the mechanism for this is not fully understood. We found that survivin is an important regulator of stiffness-mediated ECM synthesis and intracellular stiffness in VSMCs. Whole-transcriptome analysis and cell culture experiments showed that survivin expression is upregulated in injured femoral arteries in mice and in human VSMCs cultured on stiff fibronectin-coated hydrogels. Suppressed expression of survivin in human VSMCs significantly decreased the stiffness-mediated expression of ECM components related to arterial stiffening, such as collagen-I, fibronectin, and lysyl oxidase. By contrast, expression of these ECM proteins was rescued by ectopic expression of survivin in human VSMCs cultured on soft hydrogels. Interestingly, atomic force microscopy analysis showed that suppressed or ectopic expression of survivin decreases or increases intracellular stiffness, respectively. Furthermore, we observed that inhibiting Rac and Rho reduces survivin expression, elucidating a mechanical pathway connecting intracellular tension, mediated by Rac and Rho, to survivin induction. Finally, we found that survivin inhibition decreases FAK phosphorylation, indicating that survivin-dependent intracellular tension feeds back to maintain signaling through FAK. These findings suggest a novel mechanism by which survivin potentially modulates arterial stiffness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA