Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 66(21): 14597-14608, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37862143

RESUMO

Phosphodiesterase 11A4 (PDE11A4) is a dual-acting cyclic nucleotide hydrolase expressed in neurons in the CA1, subiculum, amygdalostriatal transition area and amygdalohippocampal area of the extended hippocampal formation. PDE11A4 is the only PDE enzyme to emanate solely from hippocampal formation, a key brain region for the formation of long-term memory. PDE11A4 expression increases in the hippocampal formation of both humans and rodents as they age. Interestingly, PDE11A knockout mice do not show age-related deficits in associative memory and show no gross histopathology. This suggests that inhibition of PDE11A4 might serve as a therapeutic option for age-related cognitive decline. A novel, yeast-based high throughput screen previously identified moderately potent, selective PDE11A4 inhibitors, and this work describes initial efforts that improved potency more than 10-fold and improved some pharmaceutical properties of one of these scaffolds, leading to selective, cell-penetrant PDE11A4 inhibitors, one of which is 10-fold more potent compared to tadalafil in cell-based activity.


Assuntos
Disfunção Cognitiva , Inibidores de Fosfodiesterase , Humanos , Animais , Camundongos , Inibidores de Fosfodiesterase/farmacologia , Inibidores de Fosfodiesterase/uso terapêutico , Inibidores de Fosfodiesterase/metabolismo , 3',5'-GMP Cíclico Fosfodiesterases/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Encéfalo/metabolismo , Camundongos Knockout , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo
2.
PLoS Negl Trop Dis ; 16(3): e0010216, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35294431

RESUMO

Filariasis, caused by a family of parasitic nematodes, affects millions of individuals throughout the tropics and is a major cause of acute and chronic morbidity. Current drugs are largely used in mass drug administration programs aimed at controlling the spread of disease by killing microfilariae, larval forms of the parasite responsible for transmission from humans to humans through insect vectors with limited efficacy against adult parasites. Although these drugs are effective, in some cases there are toxic liabilities. In case of loiasis which is caused by the parasitic eyeworm Loa loa, mass drug administration is contraindicative due to severe side effects of microfilariae killing, which can be life threatening. Our screening program and medicinal chemistry efforts have led to the identification of a novel series of compounds with potent killing activity against adult filarial parasites and minimal activity against microfilariae. A structural comparison search of our compounds demonstrated a close structural similarity to a recently described histone demethylase inhibitor, GSKJ1/4 which also exhibits selective adult parasite killing. We demonstrated a modification of histone methylation in Brugia malayi parasites treated with our compounds which might indicate that the mode of drug action is at the level of histone methylation. Our results indicate that targeting B. malayi and other filarial parasite demethylases may offer a novel approach for the development of a new class of macrofilaricidal therapeutics.


Assuntos
Brugia Malayi , Adulto , Animais , Histona Desmetilases , Histonas , Humanos , Loa , Microfilárias , Preparações Farmacêuticas
3.
RSC Med Chem ; 11(1): 98-101, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33479608

RESUMO

The cGMP-dependent protein kinase in Plasmodium falciparum (PfPKG) plays multiple roles in the life cycle of the parasite. As a result, this enzyme is a potential target for new antimalarial agents. Existing inhbitors, while potent and active in malaria models are not optimal. This communication describes initial optimization of a structurally distinct class of PfPKG inhibitors.

4.
ACS Med Chem Lett ; 9(3): 210-214, 2018 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-29541362

RESUMO

Lymphatic filariasis infects over 120 million people worldwide and can lead to significant disfigurement and disease. Resistance is emerging with current treatments, and these therapies have dose limiting adverse events; consequently new targets are needed. One approach to achieve this goal is inhibition of parasitic protein kinases involved in circumventing host defense mechanisms. This report describes structure-activity relationships leading to the identification of a potent, orally bioavailable stress activated protein kinase inhibitor that may be used to investigate this hypothesis.

5.
Arch Biochem Biophys ; 618: 15-22, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28137423

RESUMO

Quinolinol-based compounds are a promising starting point for discovery of effective inhibitors of the clostridial neurotoxin, botulinum neurotoxin type A light chain (BoNT/A LC). Insights into the mechanism of inhibition by quinolinol compounds facilitate interpretation of docking data and inhibitor optimization. In this study, a fluorogenic substrate of BoNT/A, SNAPtide, was used to study the mechanism by which two new quinolinol compounds, MSU58 and MSU84, with IC50 values of 3.3 µM and 5.8 µM, respectively, inhibit BoNT/A LC. Kinetic studies and model discrimination analysis showed both compounds to be competitive inhibitors of BoNT/A LC with inhibition constants (KI) 3.2 µM and 6.2 µM for MSU58 and MSU84, respectively. These data indicate that the inhibitors bind in the BoNT/A LC active site and that inhibitor binding is mutually exclusive with the binding of the substrate. This is the first study to report the competitive inhibition of BoNT/A LC by quinolinol compounds. These data help define the inhibitor binding pocket and, along with structure activity relationship studies, provide immediate direction for further compound synthesis.


Assuntos
Toxinas Botulínicas Tipo A/antagonistas & inibidores , Hidroxiquinolinas/química , Ligação Competitiva , Toxinas Botulínicas Tipo A/química , Catálise , Domínio Catalítico , Concentração Inibidora 50 , Cinética , Luz , Peptídeos/química , Ligação Proteica , Proteínas Recombinantes/química , Relação Estrutura-Atividade , Água/química , Zinco/química
6.
J Med Chem ; 57(21): 8718-28, 2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-25141341

RESUMO

The discovery and clinical development of heat shock protein 90 (Hsp90) inhibitors continue to progress. A number of Hsp90 inhibitors are in clinical trials, and preclinical discoveries of new chemotypes that bind to distinct regions in the protein as well as isoform selective compounds are active areas of research. This review will highlight progress in the field since 2010.


Assuntos
Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Benzoquinonas/farmacologia , Desenho de Fármacos , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Lactamas Macrocíclicas/farmacologia , Neoplasias/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/fisiologia , Ratos , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...