Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(32): 21838-21849, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37475759

RESUMO

We herein present a simple, fast, efficient and environmentally friendly method for preparing silver nanoparticles (AgNPs) using the solution plasma method in the presence of extracts from Paramignya trimera (P. trimera). The effects of P. trimera extract concentrations and the applied voltage on the formation of AgNPs were investigated. Surface plasmon resonance spectra show a strong peak at 413 nm for the prepared samples. The Fourier-transform infrared spectroscopy measurement results indicated the presence of possible functional groups in the prepared AgNPs. Morphological analysis revealed that the AgNPs were spherical with an average size of 8 nm. The prepared AgNPs exhibited good stability in solution compared to that of AgNPs prepared by the solution plasma technique without P. trimera extract. The formation mechanism of AgNPs is also proposed. The prepared AgNPs exhibited high antibacterial ability against Gram (+) Staphylococcus aureus, Gram (-) Pseudomonas aeruginosa bacteria and strong anticancer activity for the AGS gastric cancer cell line. The obtained results demonstrated that this is a simple, rapid, environmentally friendly method for preparing AgNPs instead of conventional methods using chemical reducing agents for potential applications.

2.
RSC Adv ; 10(67): 41237-41247, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-35519195

RESUMO

We herein present a simple, fast, efficient and environmentally friendly technique to prepare graphene oxide (GO) from graphite rods of recycled batteries by using solution plasma exfoliated techniques at atmospheric pressure. The prepared GO with an average 3 nm-thickness and 1.5 µm-length, having large surface area and high porosity, has been used to remove Pb(ii) ions from the water. The obtained results indicated that the adsorption of Pb(ii) onto GO depends on pH, contact time, temperature and initial concentration of Pb(ii). The maximum adsorption capacity of Pb(ii) onto GO determined from the Langmuir model (with a high R 2 value of 0.9913) was 180.1 mg g-1 at room temperature. A removal efficiency of ∼96.6% was obtained after 40 min. Calculations of thermodynamic parameters (ΔG°, ΔH° và ΔS°) show the adsorption of Pb(ii) ions on the GO surface is spontaneous and intrinsically heat-absorbing. The potential mechanism can be suggested here to be the interaction of the π-π* bonding electrons and Pb(ii) as well as the electrostatic attraction between Pb(ii) and the oxygen-containing functional groups on GO.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...