Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Phytoremediation ; 25(5): 598-608, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35815696

RESUMO

Stem powder and its active carbon of Arachis hypogaea plant are identified to have strong adsorptivity for lead ions. The bio-sorbents are characterized by conventional methods including XRD and FTIR analysis. These biomaterials are investigated for their maximum adsorption for lead ions by optimizing the extraction conditions. The maximum removal is observed in the pH range of 6-7 for both sorbents. With stem powders, the removal is 76.0% from a simulated lead solution of concentration: 20.0 mg/L with 1.5 g/L of the sorbent and at an equilibration time of 2.0 h. With the active carbon, the maximum extraction of: 86.0% is observed at pH: 6.5 with 1.0 g/L of the sorbent after an equilibration time of 1.5 h. The sorption capacities are 32.0 mg/g for stem powders, and 40.5 mg/g for active carbon. Many co-ions have marginal interference. Spent adsorbents can be recycled after regeneration. Thermodynamic investigations reveal the spontaneity and endothermic nature of adsorption. High ΔH values viz., 26.45 kJ/mole for AHSP and 46.40 kJ/mole for AHSAC, confirm the bonding of Pb2+ ions with the sorbents is either "ion-exchange" and/or a sort of "complex formation." The disorder at the solid and liquid boundary is indicated by high positive ΔS values and it is a favorable condition for good Pb2+ adsorption. On analysis of different kinetic and isotherm models, the sorption of Pb2+ ions follows Pseudo-2nd order and Langmuir models. This confirms the mono-layer adsorption of Pb2+ ions on the humongous surface of the sorbent. The adsorbents are successfully applied to treat industrial effluent samples.


In the present investigation, stem powder and its active carbon of Arachis hypogaea plant are identified to have strong adsorptivity for highly toxic lead ions. Successful methodologies are developed for the maximum extraction of lead ions from industrial wastewater at a convenient nearly neutral pH. The adsorption capacities are as high as: 32.0 mg/g for stem powders and 40.5 mg/g for active carbon. The sorbents are characterized and the sorption mechanism is investigated. The novelty of the present investigation is that highly toxic lead ions can be easily removed from polluted water by using simple bio-adsorbents by adopting convenient procedures.


Assuntos
Poluentes Químicos da Água , Poluentes Químicos da Água/química , Pós , Arachis , Chumbo/análise , Biodegradação Ambiental , Termodinâmica , Íons/análise , Carbono , Adsorção , Cinética , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...