Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Cell Res ; 1869(1): 119139, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34624436

RESUMO

Trophoblasts are specialized epithelial cells of the placenta that are involved in invasion, communication and the exchange of materials between the mother and fetus. Cytoplasmic Ca2+ ([Ca2+]c) plays critical roles in regulating such processes in other cell types, but relatively little is known about the mechanisms that control this second messenger in trophoblasts. In the current study, the presence of RyRs and their accessory proteins in placental tissues and in the BeWo choriocarcinoma, a model trophoblast cell-line, were examined using immunohistochemistry and Western immunoblotting. Contributions of RyRs to Ca2+ signalling and to random migration in BeWo cells were investigated using fura-2 fluorescent and brightfield videomicroscopy. The effect of RyR inhibition on reorganization of the F-actin cytoskeleton elicited by the hormone angiotensin II, was determined using phalloidin-labelling and confocal microscopy. RyR1 and RyR3 proteins were detected in trophoblasts of human first trimester and term placental villi, along with the accessory proteins triadin and calsequestrin. Similarly, RyR1, RyR3, triadin and calsequestrin were detected in BeWo cells. In this cell-line, activation of RyRs with micromolar ryanodine increased [Ca2+]c, whereas pharmacological inhibition of these channels reduced Ca2+ transients elicited by the peptide hormones angiotensin II, arginine vasopressin and endothelin 1. Angiotensin II increased the velocity, total distance and Euclidean distance of random migration by BeWo cells and these effects were significantly reduced by tetracaine and by inhibitory concentrations of ryanodine. RyRs contribute to reorganization of the F-actin cytoskeleton elicited by angiotensin II, since inhibition of these channels restores the parallelness of these structures to control levels. These findings demonstrate that trophoblasts contain a suite of proteins similar to those in other cell types possessing highly developed Ca2+ signal transduction systems, such as skeletal muscle. They also indicate that these channels regulate the migration of trophoblast cells, a process that plays a key role in development of the placenta.


Assuntos
Sinalização do Cálcio , Movimento Celular , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Trofoblastos/metabolismo , Citoesqueleto de Actina/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Hormônios Peptídicos/farmacologia , Trofoblastos/efeitos dos fármacos , Trofoblastos/fisiologia
2.
Biochem Biophys Res Commun ; 357(4): 964-70, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17466265

RESUMO

We recently identified a novel phospholipase Cdelta isoform, PLC-deltasu, in sea urchin gametes, whose precise functional role during fertilization and early embryogenesis remains unknown. Here, we characterized the binding of the PLC-deltasu PH domain to different phosphatidylinositol (PI) phospholipids and studied changes in its localization during fertilization. The PLC-deltasu PH domain bound most strongly to PI(3,4)P(2) and PI(3,5)P(2) phospholipids, in contrast to the PLCdelta1 PH domain which bound predominantly to PI(4,5)P(2). A green fluorescent protein tagged PLC-deltasu PH domain localized to the plasma membrane and its localization increased at fertilization and following addition of a Ca(2+) ionophore. However, recombinant PLC-deltasu failed to cause Ca(2+) signals like those seen at fertilization, in mouse and sea urchin eggs. Our findings suggest that PLC-deltasu is unlikely to be directly involved in the process of egg activation but may play a role in mediating extracellular signals transmitted via the PI 3'-kinase pathway.


Assuntos
Desenvolvimento Embrionário/fisiologia , Fertilização/fisiologia , Isoenzimas/metabolismo , Fosfolipídeos/química , Ouriços-do-Mar/metabolismo , Fosfolipases Tipo C/metabolismo , Zigoto/metabolismo , Animais , Células Cultivadas , Camundongos , Fosfolipase C delta , Ligação Proteica
3.
J Biol Chem ; 282(19): 13984-93, 2007 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-17331947

RESUMO

Fluctuations in cytosolic Ca(2+) are crucial for a variety of cellular processes including many aspects of development. Mobilization of intracellular Ca(2+) stores via the production of inositol trisphosphate (IP(3)) and the consequent activation of IP(3)-sensitive Ca(2+) channels is a ubiquitous means by which diverse stimuli mediate their cellular effects. Although IP(3) receptors have been well studied at fertilization, information regarding their possible involvement during subsequent development is scant. In the present study we examined the role of IP(3) receptors in early development of the zebrafish. We report the first molecular analysis of zebrafish IP(3) receptors which indicates that, like mammals, the zebrafish genome contains three distinct IP(3) receptor genes. mRNA for all isoforms was detectable at differing levels by the 64 cell stage, and IP(3)-induced Ca(2+) transients could be readily generated (by flash photolysis) in a controlled fashion throughout the cleavage period in vivo. Furthermore, we show that early blastula formation was disrupted by pharmacological blockade of IP(3) receptors or phospholipase C, by molecular inhibition of the former by injection of IRBIT (IP(3) receptor-binding protein released with IP(3)) and by depletion of thapsigargin-sensitive Ca(2+) stores after completion of the second cell cycle. Inhibition of Ca(2+) entry or ryanodine receptors, however, had little effect. Our work defines the importance of IP(3) receptors during early development of a genetically and optically tractable model vertebrate organism.


Assuntos
Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Receptores de Inositol 1,4,5-Trifosfato/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Animais , Cálcio/metabolismo , Inibidores Enzimáticos/farmacologia , Receptores de Inositol 1,4,5-Trifosfato/classificação , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Tapsigargina/farmacologia , Proteínas de Peixe-Zebra/metabolismo
4.
Circ Res ; 100(6): 874-83, 2007 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-17322175

RESUMO

Ca(2+) release via type 2 ryanodine receptors (RyR2) regulates cardiac function. Molecular cloning of human RyR2 identified 2 alternatively spliced variants, comprising 30- and 24-bp sequence insertions; yet their role in shaping cardiomyocyte Ca(2+) signaling and cell phenotype is unknown. We profiled the developmental regulation and the tissue and species specificity of these variants and showed that their recombinant expression in HL-1 cardiomyocytes profoundly modulated nuclear and cytoplasmic Ca(2+) release. All splice variants localized to the sarcoplasmic reticulum, perinuclear Golgi apparatus, and to finger-like invaginations of the nuclear envelope (nucleoplasmic reticulum). Strikingly, the 24-bp splice insertion that was present at low levels in embryonic and adult hearts was essential for targeting RyR2 to an intranuclear Golgi apparatus and promoted the intracellular segregation of this variant. The amplitude variability of nuclear and cytoplasmic Ca(2+) fluxes were reduced in nonstimulated cardiomyocytes expressing both 30- and 24-bp splice variants and were associated with lower basal levels of apoptosis. Expression of RyR2 containing the 24-bp insertion also suppressed intracellular Ca(2+) fluxes following prolonged caffeine exposure (1 mmol/L, 16 hours) that protected cells from apoptosis. The antiapoptotic effects of this variant were linked to increased levels of Bcl-2 phosphorylation. In contrast, RyR2 containing the 30-bp insertion, which was abundant in human embryonic heart but was decreased during cardiac development, did not protect cardiomyocytes from caffeine-evoked apoptosis. Thus, we provide the first evidence that RyR2 splice variants exquisitely modulate intracellular Ca(2+) signaling and are key determinants of cardiomyocyte apoptotic susceptibility.


Assuntos
Processamento Alternativo/genética , Apoptose/genética , Sinalização do Cálcio/fisiologia , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Cafeína/farmacologia , Núcleo Celular/metabolismo , Células Cultivadas , Citoplasma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Transferência de Genes , Humanos , Camundongos , Dados de Sequência Molecular , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Mensageiro/metabolismo , Especificidade da Espécie
5.
Biol Cell ; 97(9): 699-707, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15730344

RESUMO

BACKGROUND INFORMATION: The uneven distribution of the Ins(1,4,5)P3R [Ins(1,4,5)P3 receptor] within the ER (endoplasmic reticulum) membrane generates spatially complex Ca2+ signals. The ER is a dynamic network, which allows the rapid diffusion of membrane proteins from one part of the cell to another. However, little is known about the localization and the dynamics of the Ins(1,4,5)P3R in the ER of living cells. We have used a MDCK (Madin-Darby canine kidney) clone stably expressing the Ins(1,4,5)P3R1-GFP (where GFP stands for green fluorescent protein) to investigate the effect of cell polarity on the lateral mobility of the Ins(1,4,5)P3R. RESULTS: In non-confluent MDCK cells, the chimaera is homogeneously distributed throughout the ER and the nuclear envelope. FRAP (fluorescence recovery after photobleaching) experiments showed that the receptor can move freely in the ER with a diffusion constant (D=0.01 microm2/s) approx. ten times lower than other ER membrane proteins. In confluent polarized cells, two populations of receptor can be defined: one population is distributed in the cytoplasm and is mobile but with a slower diffusion constant (D=0.004 microm2/s) compared with non-confluent cells, whereas the other population is concentrated at the periphery of the cells and is apparently immobile. CONCLUSIONS: The observed differences in the mobility of the Ins(1,4,5)P3R are most probably due to its interactions with stable protein complexes that form at the periphery of the polarized cells.


Assuntos
Canais de Cálcio/metabolismo , Polaridade Celular , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio/genética , Sinalização do Cálcio/fisiologia , Linhagem Celular , Cães , Retículo Endoplasmático/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato , Membrana Nuclear/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
6.
J Cell Biol ; 164(7): 1033-44, 2004 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-15051735

RESUMO

In mammalian eggs, sperm-induced Ca2+ oscillations at fertilization are the primary trigger for egg activation and initiation of embryonic development. Identifying the downstream effectors that decode this unique Ca2+ signal is essential to understand how the transition from egg to embryo is coordinated. Here, we investigated whether conventional PKCs (cPKCs) can decode Ca2+ oscillations at fertilization. By monitoring the dynamics of GFP-labeled PKCalpha and PKCgamma in living mouse eggs, we demonstrate that cPKCs translocate to the egg membrane at fertilization following a pattern that is shaped by the amplitude, duration, and frequency of the Ca2+ transients. In addition, we show that cPKC translocation is driven by the C2 domain when Ca2+ concentration reaches 1-3 microM. Finally, we present evidence that one physiological function of activated cPKCs in fertilized eggs is to sustain long-lasting Ca2+ oscillations, presumably via the regulation of store-operated Ca2+ entry.


Assuntos
Sinalização do Cálcio/fisiologia , Fertilização/fisiologia , Óvulo/citologia , Óvulo/fisiologia , Proteína Quinase C/metabolismo , Animais , Membrana Celular/metabolismo , Feminino , Masculino , Camundongos , Oscilometria , Transporte Proteico , Interações Espermatozoide-Óvulo/fisiologia , Espermatozoides/fisiologia
7.
Biochem Biophys Res Commun ; 313(4): 894-901, 2004 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-14706626

RESUMO

Calcium (Ca(2+)) is a ubiquitous intracellular messenger, controlling a diverse range of cellular processes, including fertilization and development of the embryo. One of the key mechanisms involved in triggering intracellular calcium release is the generation of the second messenger inositol-1,4,5-phosphate (IP(3)) by the phospholipase C (PLC) class of enzymes. Although five distinct forms of PLC have been identified in mammals (beta, gamma, delta, epsilon, and zeta), only one, PLCgamma, has thus far been detected in echinoderms. In the present study, we describe the isolation of a cDNA encoding a novel PLC isoform of the delta (delta) subclass, PLC-deltasu, from the egg of the Pacific purple sea urchin Strongylocentrotus purpuratus. We also demonstrate the presence of this PLC within the sperm and in the early embryo. The PLC-deltasu cDNA (2.44kb) encodes a 742 amino acid polypeptide with an open reading frame of 84.6kDa and a pI of 6.04. All of the characteristic domains found in mammalian PLCdelta isoforms (PH domain, EF hands, an X-Y catalytic region, and a C2 domain) are present in PLC-deltasu. A homology search revealed that PLC-deltasu shares most sequence identity with bovine PLCdelta2 (39%). We present evidence that PLC-deltasu is expressed in unfertilized eggs, fertilized eggs, and in the early embryo. In addition to Northern and polymerase chain reaction (PCR) analyses, in situ hybridization experiments further demonstrated that the embryonic regions within which the PLC-deltasu transcript can be detected during early embryonic development are associated with the highest levels of proliferative activity, suggesting a possible involvement with metabolism or cell cycle regulation.


Assuntos
Isoenzimas/genética , Ouriços-do-Mar/enzimologia , Ouriços-do-Mar/genética , Fosfolipases Tipo C/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , DNA Complementar/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Masculino , Dados de Sequência Molecular , Óvulo/enzimologia , Fosfolipase C delta , Ouriços-do-Mar/embriologia , Homologia de Sequência de Aminoácidos , Espermatozoides/enzimologia , Zigoto/enzimologia
8.
J Cell Sci ; 116(Pt 13): 2791-803, 2003 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-12759372

RESUMO

The subcellular localization of inositol 1,4,5-trisphosphate (InsP3)-induced Ca2+ signals is important for the activation of many physiological functions. In epithelial cells the spatial distribution of InsP3 receptor is restricted to specific areas, but little is known about the relationship between the receptor's distribution and cell polarity. To investigate this relationship, the best known polarized cell model, MDCK, was examined. This cell line is characterized by a strong expression of the type 3 InsP3 receptor and the subcellular localization of this receptor was followed during cell polarization using immunofluorescence and confocal analysis. In non-polarized cells, including ras transformed f3 MDCK cells, the type 3 InsP3 receptor was found to co-localize with markers of the endoplasmic reticulum in the cytoplasm. In contrast, in polarized cells, this receptor was mostly distributed at the apex of the lateral plasma membrane with the markers of tight junctions, ZO-1 and occludin. The localization of the type 3 InsP3 receptor in the vicinity of tight junctions was confirmed by immunogold electron microscopy. The culture of MDCK cells in calcium-deprived medium, led to disruption of cell polarity and receptor redistribution in the cytoplasm. Addition of calcium to these deprived cells induced the restoration of polarity and the relocalization of the receptor to the plasma membrane. MDCK cells were stably transfected with a plasmid coding the full-length mouse type 1 InsP3 receptor tagged with EGFP at the C-terminus. The EGFP-tagged type 1 receptor and the endogenous type 3 co-localized in the cytoplasm of non-polarized cells and at the tight junction level of polarized cells. Thus, the localization of InsP3 receptor in MDCK depends on polarity.


Assuntos
Canais de Cálcio/metabolismo , Membrana Celular/metabolismo , Polaridade Celular/fisiologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Junções Íntimas/metabolismo , Animais , Cálcio/deficiência , Cálcio/farmacologia , Canais de Cálcio/genética , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Linhagem Celular , Membrana Celular/ultraestrutura , Polaridade Celular/efeitos dos fármacos , Citoplasma/metabolismo , Cães , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Imunofluorescência , Imuno-Histoquímica , Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato , Rim/citologia , Rim/metabolismo , Proteínas de Membrana/metabolismo , Microscopia Confocal , Microscopia Eletrônica , Ocludina , Fosfoproteínas/metabolismo , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Receptores Citoplasmáticos e Nucleares/genética , Junções Íntimas/ultraestrutura , Transfecção , Proteína da Zônula de Oclusão-1
9.
J Cell Sci ; 115(Pt 10): 2139-49, 2002 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-11973355

RESUMO

A series of intracellular Ca2+ oscillations are responsible for triggering egg activation and cortical granule exocytosis at fertilization in mammals. These Ca2+ oscillations are generated by an increase in inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)], which results from the hydrolysis of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)]. Using confocal imaging to simultaneously monitor Ca2+ and plasma membrane PtdIns(4,5)P(2) in single living mouse eggs we have sought to establish the relationship between the kinetics of PtdIns(4,5)P(2) metabolism and the Ca2+ oscillations at fertilization. We report that there is no detectable net loss of plasma membrane PtdIns(4,5)P(2) either during the latent period or during the subsequent Ca2+ oscillations. When phosphatidylinositol 4-kinase is inhibited with micromolar wortmannin a limited decrease in plasma membrane PtdIns(4,5)P(2) is detected in half the eggs studied. Although we were unable to detect a widespread loss of PtdIns(4,5)P(2), we found that fertilization triggers a net increase in plasma membrane PtdIns(4,5)P(2) that is localized to the vegetal cortex. The fertilization-induced increase in PtdIns(4,5)P(2) follows the increase in Ca2+, is blocked by Ca2+ buffers and can be mimicked, albeit with slower kinetics, by photoreleasing Ins(1,4,5)P(3). Inhibition of Ca2+-dependent exocytosis of cortical granules, without interfering with Ca2+ transients, inhibits the PtdIns(4,5)P(2) increase. The increase appears to be due to de novo synthesis since it is inhibited by micromolar wortmannin. Finally, there is no increase in PtdIns(4,5)P(2) in immature oocytes that are not competent to extrude cortical granules. These studies suggest that fertilization does not deplete plasma membrane PtdIns(4,5)P(2) and that one of the pathways for increasing PtdIns(4,5)P(2) at fertilization is invoked by exocytosis of cortical granules.


Assuntos
Membrana Celular/metabolismo , Fertilização , Óvulo/citologia , Óvulo/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , 1-Fosfatidilinositol 4-Quinase/metabolismo , Androstadienos/farmacologia , Animais , Cálcio/metabolismo , Membrana Celular/efeitos dos fármacos , Exocitose/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica , Proteínas de Fluorescência Verde , Proteínas Luminescentes/metabolismo , Camundongos , Óvulo/efeitos dos fármacos , Wortmanina
10.
FASEB J ; 16(6): 622-4, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11919174

RESUMO

Annexin 6 is one of a widely expressed family of calcium-binding proteins found in most mammalian tissues, including the heart. Several studies have implicated annexin 6 in the regulation of intracellular Ca2+ signaling, and it has been shown in vitro to act as a modulator of the sarcoplasmic reticulum Ca2+-release channel, cardiac L-type calcium channel, and Na+/Ca2+ exchanger. To investigate the role of annexin 6 in intact cardiomyocytes, we used mice containing a targeted disruption of the annexin 6 gene. Compared with controls, the myocytes of annexin 6 null-mutant mice demonstrated a significant increase in the rates of shortening and relengthening. Intracellular Ca2+ transients in fura-2-loaded cardiomyocytes induced by caffeine showed a normal baseline and amplitude, whereas the rate of decay was doubled in annexin 6-/- myocytes compared with control mice. These results show that annexin 6 knockout in the mouse leads to an increase in myocyte contractility and faster diastolic Ca2+ removal from the cytoplasm. In light of published findings showing annexin 6 to be down-regulated in end-stage heart failure, these results are consistent with a role for annexin 6 as a negative inotropic factor in the regulation of cardiomyocyte mechanics.


Assuntos
Anexina A6/genética , Anexina A6/fisiologia , Sinalização do Cálcio , Contração Miocárdica , Miocárdio/metabolismo , Animais , Fenômenos Biomecânicos , Cafeína/farmacologia , Células Cultivadas , Citoplasma/metabolismo , Marcação de Genes , Cinética , Camundongos , Camundongos Knockout , Modelos Cardiovasculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...