Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Adv ; 67: 108180, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37236328

RESUMO

The recent advancement in the human glycome and progress in the development of an inclusive network of glycosylation pathways allow the incorporation of suitable machinery for protein modification in non-natural hosts and explore novel opportunities for constructing next-generation tailored glycans and glycoconjugates. Fortunately, the emerging field of bacterial metabolic engineering has enabled the production of tailored biopolymers by harnessing living microbial factories (prokaryotes) as whole-cell biocatalysts. Microbial catalysts offer sophisticated means to develop a variety of valuable polysaccharides in bulk quantities for practical clinical applications. Glycans production through this technique is highly efficient and cost-effective, as it does not involve expensive initial materials. Metabolic glycoengineering primarily focuses on utilizing small metabolite molecules to alter biosynthetic pathways, optimization of cellular processes for glycan and glycoconjugate production, characteristic to a specific organism to produce interest tailored glycans in microbes, using preferably cheap and simple substrate. However, metabolic engineering faces one of the unique challenges, such as the need for an enzyme to catalyze desired substrate conversion when natural native substrates are already present. So, in metabolic engineering, such challenges are evaluated, and different strategies have been developed to overcome them. The generation of glycans and glycoconjugates via metabolic intermediate pathways can still be supported by glycol modeling achieved through metabolic engineering. It is evident that modern glycans engineering requires adoption of improved strain engineering strategies for creating competent glycoprotein expression platforms in bacterial hosts, in the future. These strategies include logically designing and introducing orthogonal glycosylation pathways, identifying metabolic engineering targets at the genome level, and strategically improving pathway performance (for example, through genetic modification of pathway enzymes). Here, we highlight current strategies, applications, and recent progress in metabolic engineering for producing high-value tailored glycans and their applications in biotherapeutics and diagnostics.


Assuntos
Produtos Biológicos , Humanos , Produtos Biológicos/metabolismo , Polissacarídeos/química , Glicosilação , Glicoconjugados/genética , Glicoconjugados/metabolismo , Engenharia Metabólica/métodos , Bactérias/genética
2.
Food Chem (Oxf) ; 6: 100166, 2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-36875799

RESUMO

Brown seaweeds (Phaeophyceae) are a rich source of polyphenols (up to 20% dry weight) with a structure based on phloroglucinol (1,3,5-trihydroxybenzene). To-date the determination of total phenolics content (TPC) involves a redox reaction with the Folin-Ciocalteu (FC) reagent. However, side reactions with other reducing substances preclude accurate, direct measurement of TPC. This research reports a novel microplate assay involving a coupling reaction between phloroglucinol with Fast Blue BB (FBBB) diazonium salt, at basic pH, to form a stable tri-azo complex with maximum absorbance at 450 nm. Linear regression correlation values (R2) were ≥0.99 with phloroglucinol as standard. Direct quantification of TPCs (phloroglucinol equivalents, PGEs) in crude aqueous and ethanolic extracts from A. nodosum demonstrated that the new FBBB assay is not subject to side-redox interference and provides a more accurate estimate of TPC (1.2-3.9-fold lower than with the FC assay) in a relatively rapid (30 min), cost-effective (0.24€/test) microplate format.

3.
Phytochem Rev ; : 1-26, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35250414

RESUMO

Algal biomass is a promising feedstock for sustainable production of a range of value-added compounds and products including food, feed, fuel. To further augment the commercial value of algal metabolites, efficient valorization methods and biorefining channels are essential. Algal extracts are ideal sources of biotechnologically viable compounds loaded with anti-microbial, anti-oxidative, anti-inflammatory, anti-cancerous and several therapeutic and restorative properties. Emerging technologies in biomass valorisation tend to reduce the significant cost burden in large scale operations precisely associated with the pre-treatment, downstream processing and waste management processes. In order to enhance the economic feasibility of algal products in the global market, comprehensive extraction of multi-algal product biorefinery is envisaged as an assuring strategy. Algal biorefinery has inspired the technologists with novel prospectives especially in waste recovery, carbon concentration/sequestration and complete utilisation of the value-added products in a sustainable closed-loop methodology. This review critically examines the latest trends in the algal biomass valorisation and the expansive feedstock potentials in a biorefinery perspective. The recent scope dynamics of algal biomass utilisation such as bio-surfactants, oleochemicals, bio-stimulants and carbon mitigation have also been discussed. The existing challenges in algal biomass valorisation, current knowledge gaps and bottlenecks towards commercialisation of algal technologies are discussed. This review is a comprehensive presentation of the road map of algal biomass valorisation techniques towards biorefinery technology. The global market view of the algal products, future research directions and emerging opportunities are reviewed.

4.
Curr Res Food Sci ; 4: 354-364, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34142096

RESUMO

The bioactivity and gelling properties of a carbohydrate-rich algal extract obtained from locally harvested Ascophyllum nodosum seaweed using a chemical-free approach were investigated for its potential interest in food applications. Physicochemical characterisation and compositional analysis of the extract, using FTIR, biochemical methods and monosaccharide analysis, confirmed the presence of alginates and fucoidans, although the main polysaccharide present in it was laminarin. Significant amounts of phenolic compounds (~9 â€‹mg phloroglucinol/100 â€‹mg sample) were also detected. As a result, the extract exhibited good antioxidant activity. It also showed promising prebiotic potential, promoting the growth of beneficial Lactobacillus sp. and Bifidobacteria sp. when compared with commercial prebiotics, but not that of pathogenic bacteria such as E. coli or P. aeruginosa. The gelling properties of the raw extract were explored to optimize hydrogel bead formation by external gelation in CaCl2 solutions. This was enhanced at neutral to alkaline pHs and high extract and CaCl2 concentrations. The mechanical strength, nano- and microstructure of the hydrogel beads prepared under optimised conditions were determined using compression tests, synchrotron small- and wide-angle X-ray scattering (SAXS/WAXS) and scanning electron microscopy (SEM). It was concluded that the raw algal extract at neutral pH had potential for use as a gelling agent, although further enrichment with alginate improved the mechanical properties of the obtained gels. The advantages and disadvantages of applying the non-purified algal extract in comparison with purified carbohydrates are discussed.

5.
Microb Cell Fact ; 16(1): 83, 2017 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-28511724

RESUMO

BACKGROUND: Fungal swollenins (SWOs) constitute a class of accessory proteins that are homologous to canonical plant expansins. Expansins and expansin-related proteins are well known for acting in the deagglomeration of cellulose structure by loosening macrofibrils. Consequently, SWOs can increase the accessibility and efficiency of the other enzymes involved in the saccharification of cellulosic substrates. Thus, SWOs are promising targets for improving the hydrolysis of plant biomass and for use as an additive to enhance the efficiency of an enzyme cocktail designed for the production of biofuels. RESULTS: Here, we report the initial characterization of an SWO from Trichoderma harzianum (ThSwo) that was successfully produced using Escherichia coli as a host. Initially, transcriptome and secretome data were used to compare swo gene expression and the amount of secreted ThSwo. The results from structural modeling and phylogenetic analysis of the ThSwo protein showed that ThSwo does preserve some structural features of the plant expansins and family-45 glycosyl hydrolase enzymes, but it evolutionarily diverges from both of these protein classes. Recombinant ThSwo was purified at a high yield and with high purity and showed secondary folding similar to that of a native fungal SWO. Bioactivity assays revealed that the purified recombinant ThSwo created a rough and amorphous surface on Avicel and displayed a high synergistic effect with a commercial xylanase from T. viride, enhancing its hydrolytic performance up to 147 ± 7%. CONCLUSIONS: Many aspects of the structure and mechanism of action of fungal SWOs remain unknown. In the present study, we produced a recombinant, active SWO from T. harzianum using a prokaryotic host and confirmed its potential synergistic role in biomass degradation. Our work paves the way for further studies evaluating the structure and function of this protein, especially regarding its use in biotechnology.


Assuntos
Biocombustíveis , Biomassa , Escherichia coli/metabolismo , Proteínas Fúngicas/metabolismo , Trichoderma/metabolismo , Biotecnologia/métodos , Celulose/metabolismo , Escherichia coli/genética , Proteínas Fúngicas/genética , Hidrólise , Filogenia , Trichoderma/genética
6.
Bioresour Technol ; 150: 202-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24177152

RESUMO

This study investigated the potential of grass biomass as a feedstock for mcl-PHA production. Pretreatments (2% NaOH at 120°C or hot water at 120°C) of perennial ryegrass were employed alone or in combination with sodium chlorite/acetic acid (SC/AA) delignification to evaluate the enzymatic digestibility and subsequent utilization of resultant sugars by Pseudomonas strains. NaOH pretreated sample had better digestibility than raw and hot water treated samples and this hydrolysate supported good growth of all tested strains with limited mcl-PHA (6-17% of cell dry mass (CDM)) accumulation. Digestibility of both untreated and pretreated samples was improved after SC/AA delignification and produced glucose (74-77%) rich hydrolysates. Tested strains accumulated 20-34% of CDM as PHA when these hydrolysates were used as sole carbon and energy source. CDM and PHA yields obtained for these strains when tested with laboratory grade sugars was similar to that achieved with grass derived sugars.


Assuntos
Biomassa , Metabolismo dos Carboidratos , Fermentação , Lolium/metabolismo , Poli-Hidroxialcanoatos/biossíntese , Pseudomonas/metabolismo , Metabolismo dos Carboidratos/efeitos dos fármacos , Carboidratos/farmacologia , Enzimas/metabolismo , Fermentação/efeitos dos fármacos , Hidrólise/efeitos dos fármacos , Lolium/efeitos dos fármacos , Pseudomonas/efeitos dos fármacos , Pseudomonas/crescimento & desenvolvimento
7.
Appl Environ Microbiol ; 78(10): 3759-62, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22407679

RESUMO

The gene encoding an acetylxylan esterase (AXE1) from the thermophilic ascomycete Talaromyces emersonii was cloned, expressed in Escherichia coli, and characterized. This form of AXE1, rTeAXE1, exhibits increased thermostability and activity at a higher temperature than other known fungal acetyl esterases, thus having huge potential application in biomass bioconversion to high value chemicals or biofuels.


Assuntos
Acetilesterase/genética , Acetilesterase/metabolismo , Talaromyces/enzimologia , Talaromyces/genética , Acetilesterase/química , Sequência de Aminoácidos , Clonagem Molecular , Estabilidade Enzimática , Escherichia coli/genética , Expressão Gênica , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Alinhamento de Sequência , Temperatura
8.
Enzyme Microb Technol ; 49(2): 229-36, 2011 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-22112414

RESUMO

In this paper, we report new sequence data for secreted thermostable fungal enzymes from the un-sequenced xylanolytic filamentous fungus Talaromyces emersonii and reveal novel insights on the potential role of enzymes relevant as wheat dough improvers. The presence of known and de novo enzyme sequences were confirmed through NanoLC-ESI-MS/MS and resultant peptide sequences were identified using SWISS PROT databases. The de novo protein sequences were assigned identity based on homology to known fungal proteins. Other proteins were assigned function based on the limited T. emersonii genome coverage. This approach allowed the identification of enzymes with relevance as wheat dough improvers. Rheological examination of wheat dough and wheat flour components treated with the thermostable fungal enzyme cocktail revealed structural alterations that can be extrapolated to the baking process. Thermoactive amylolytic, xylanolytic, glucanolytic, proteolytic and lipolytic enzyme activities were observed. Previously characterized T. emersonii enzymes present included; ß-glucosidase, xylan-1,4-ß-xyloxidase, acetylxylan esterase, acid trehalase, avenacinase, cellobiohydrolase and endo-glucanase. De novo sequence analysis confirmed peptides as being; α-glucosidase, endo-1,4-ß-xylanase, endo-arabinase, endo-glucanase, exo-ß-1,3-glucanase, glucanase/cellulase, endopeptidase and lipase/acylhydrolase. Rheology tests using wheat dough and fractioned wheat flour components in conjunction with T. emersonii enzymes show the role of these novel biocatalysts in altering properties of wheat substrates. Enzyme treated wheat flour fractions showed the effects of particular enzymes on appropriate substrates. This proteomic approach combined with rheological characterization is the first such report to the authors' knowledge.


Assuntos
Pão , Tecnologia de Alimentos , Talaromyces/enzimologia , Triticum , Sequência de Aminoácidos , Biotecnologia , Pão/análise , Elasticidade , Estabilidade Enzimática , Microbiologia de Alimentos , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glutens/química , Dados de Sequência Molecular , Reologia , Amido/química , Talaromyces/genética , Triticum/química , Viscosidade , Xilanos/química
9.
J Nat Prod ; 74(9): 1851-61, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-21875034

RESUMO

An unfractionated fucoidan was extracted from the brown alga Ascophyllum nodosum. Extraction of fucoidan from seaweed was carried out using an innovative low-chemical process. A combinational approach involving compositional analysis, HPAEC, IR analysis, GPC, and NMR was employed to elucidate the composition and structure of an unfractionated fucoidan from A. nodosum. This fucoidan is composed mainly of fucose (52.1%), and also galactose (6.1%), glucose (21.3%), and xylose (16.5%). Sulfate content was determined to be 19%. GPC data indicated a polydisperse fucoidan containing two main size fractions (47 and 420 kDa). NMR analyses revealed a fucoidan displaying broad, complex signals as expected for such a high molecular weight and heterogeneous polymer with resonances consistent with a fucoidan isolated previously from A. nodosum. The effects of fucoidan on the apoptosis of human colon carcinoma cells and fucoidan-mediated signaling pathways were also investigated. Fucoidan decreased cell viability and induced apoptosis of HCT116 colon carcinoma cells. Fucoidan treatment of HCT116 cells induced activation of caspases-9 and -3 and the cleavage of PARP, led to apoptotic morphological changes, and altered mitochondrial membrane permeability. These results detail the structure and biological activity of an unfractionated fucoidan from A. nodosum.


Assuntos
Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Ascophyllum/química , Polissacarídeos/isolamento & purificação , Polissacarídeos/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Caspase 3/efeitos dos fármacos , Caspase 9/efeitos dos fármacos , Sobrevivência Celular , Ensaios de Seleção de Medicamentos Antitumorais , Células HCT116 , Humanos , Irlanda , Polissacarídeos/química , Relação Estrutura-Atividade
10.
Annu Rev Plant Biol ; 62: 567-90, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21351878

RESUMO

All photosynthetic multicellular Eukaryotes, including land plants and algae, have cells that are surrounded by a dynamic, complex, carbohydrate-rich cell wall. The cell wall exerts considerable biological and biomechanical control over individual cells and organisms, thus playing a key role in their environmental interactions. This has resulted in compositional variation that is dependent on developmental stage, cell type, and season. Further variation is evident that has a phylogenetic basis. Plants and algae have a complex phylogenetic history, including acquisition of genes responsible for carbohydrate synthesis and modification through a series of primary (leading to red algae, green algae, and land plants) and secondary (generating brown algae, diatoms, and dinoflagellates) endosymbiotic events. Therefore, organisms that have the shared features of photosynthesis and possession of a cell wall do not form a monophyletic group. Yet they contain some common wall components that can be explained increasingly by genetic and biochemical evidence.


Assuntos
Evolução Biológica , Parede Celular/fisiologia , Plantas/ultraestrutura , Comunicação Celular , Parede Celular/ultraestrutura , Clorófitas/fisiologia , Clorófitas/ultraestrutura , Imunidade Inata , Phaeophyceae/fisiologia , Phaeophyceae/ultraestrutura , Filogenia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Rodófitas/fisiologia , Rodófitas/ultraestrutura
11.
Methods Mol Biol ; 681: 497-524, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20978986

RESUMO

Fungi and fungal enzymes have traditionally occupied a central role in biotechnology. Understanding the biochemical properties of the variety of enzymes produced by these eukaryotes has been an area of research interest for decades and again more recently due to global interest in greener bio-production technologies. Purification of an individual enzyme allows its unique biochemical and functional properties to be determined, can provide key information as to the role of individual biocatalysts within a complex enzyme system, and can inform both protein engineering and enzyme production strategies in the development of novel green technologies based on fungal biocatalysts. Many enzymes of current biotechnological interest are secreted by fungi into the extracellular culture medium. These crude enzyme mixtures are typically complex, multi-component, and generally also contain other non-enzymatic proteins and secondary metabolites. In this chapter, we describe a multi-step chromatographic strategy required to isolate three new endo-ß-glucanases (denoted EG V, EG VI, and EG VII) with activity against cereal mixed-linkage ß-glucans from the thermophilic fungus Talaromyces emersonii. This work also illustrates the challenges frequently involved in isolating individual extracellular fungal proteins in general.


Assuntos
Celulase/isolamento & purificação , Cromatografia/métodos , Talaromyces/enzimologia , Celulase/biossíntese , Celulase/química , Celulase/metabolismo , Técnicas de Cultura , Eletroforese em Gel de Poliacrilamida , Ensaios Enzimáticos , Glicosídeos/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Focalização Isoelétrica , Isoenzimas/biossíntese , Isoenzimas/química , Isoenzimas/isolamento & purificação , Isoenzimas/metabolismo , Lectinas de Plantas/metabolismo , Polissacarídeos/metabolismo , Especificidade por Substrato , Talaromyces/crescimento & desenvolvimento , Talaromyces/metabolismo
12.
J Agric Food Chem ; 58(12): 7415-22, 2010 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-20496912

RESUMO

In this study, novel extracellular thermozymes were produced by the thermophilic fungus Talaromyces emersonii (IMI 392299) on low-cost carbon inducers. This paper reports the cocktail characterization, substrate hydrolysis studies, and their application in baking. Relevant enzymes were optimally active at pH 4.5-5.0 and 70 degrees C. Model studies confirmed production of significant levels of yeast monosaccharide sugars during cereal flour hydrolysis. The "thermozyme cocktails" are thermostable secreted T. emersonii enzyme blends. In baking trials, these thermozyme cocktails showed significant improvements in bread quality with respect to hardness, staling, and loaf volume (p < 0.5). Thermozyme cocktail B- treated loaf volume was 23.2% greater than the control and 49.5% softer. Staling analysis showed that bread treated with cocktail B was 41.7% softer than the control. This is the first report of T. emersonii thermozymes positively influencing bread quality.


Assuntos
Manipulação de Alimentos , Proteínas Fúngicas/química , Talaromyces/enzimologia , Triticum/química , Pão/análise , Estabilidade Enzimática , Farinha/análise , Temperatura Alta , Concentração de Íons de Hidrogênio , Hidrólise
14.
Biochem Genet ; 48(5-6): 480-95, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20111899

RESUMO

The genes encoding xylitol dehydrogenase (Texdh) and L: -arabitol dehydrogenase (Telad) are involved in the fungal pentose pathway and were isolated from the thermophilic fungus Talaromyces emersonii, expressed in Escherichia coli, and the products purified to homogeneity. TeXDH showed activity toward xylitol and D: -sorbitol. TeLAD was active with L: -arabitol, xylitol, and D: -sorbitol. Phylogenetic analysis showed TeLAD has evolved from D: -sorbitol dehydrogenase as a result of environmental adaptation. Substrate specificity studies indicate that TeXDH is likely to have evolved from the more broadly acting TeLAD. Texdh and Telad expression was inducible by the same carbon sources responsible for induction of genes involved in biomass degradation, suggesting for the first time a coordinated regulatory control mechanism for expression of genes encoding extracellular hydrolases and intracellular metabolic genes in the pentose utilization pathways of T. emersonii. These data also suggest that TeXDH and TeLAD may be valuable in the production of xylitol, L: -arabitol, and ethanol from renewable resources rich in pentose sugars.


Assuntos
D-Xilulose Redutase/genética , D-Xilulose Redutase/metabolismo , Desidrogenase do Álcool de Açúcar/genética , Talaromyces/enzimologia , Talaromyces/genética , Sequência de Aminoácidos , Clonagem Molecular , D-Xilulose Redutase/química , D-Xilulose Redutase/isolamento & purificação , Escherichia coli/genética , Expressão Gênica , Humanos , Espaço Intracelular/enzimologia , Cinética , Dados de Sequência Molecular , Monossacarídeos/metabolismo , Filogenia , Análise de Sequência de DNA , Desidrogenase do Álcool de Açúcar/química , Desidrogenase do Álcool de Açúcar/isolamento & purificação , Talaromyces/citologia
15.
J Microbiol Biotechnol ; 20(12): 1653-63, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21193820

RESUMO

The first gene (alpha-gal1) encoding an extracellular alpha-Dgalactosidase from the thermophilic fungus Talaromyces emersonii was cloned and characterized. The alpha-gal1 gene consisted of an open reading frame of 1,792 base pairs interrupted by six introns that encoded a mature protein of 452 amino acids, including a 24 amino acid secretory signal sequence. The translated protein had highest identity with other fungal alpha-galactosidases belonging to glycosyl hydrolase family 27. The alpha-gal1 gene was overexpressed as a secretory protein with an N-terminal histidine tag in the methylotrophic yeast Pichia pastoris. Recombinant alpha-Gal1 was secreted into the culture medium as a monomeric glycoprotein with a maximal yield of 10.75 mg/l and purified to homogeneity using Hisbinding nickel-agarose affinity chromatography. The purified enzyme was maximally active at 70 degrees C, pH 4.5, and lost no activity over 10 days at 50 degrees C. alpha-Gal1 followed Michaelis-Menten kinetics (Vmax of 240.3 micronM/min/mg, Km of 0.294 mM) and was inhibited competitively by galactose (Km obs of 0.57 mM, Ki of 2.77 mM). The recombinant T. emersonii alpha-galactosidase displayed broad substrate preference, being active on both oligo- and polymeric substrates, yet had strict specificity for the alpha-galactosidic linkage. Owing to its substrate preference and noteworthy stability, alpha-Gal1 is of particular interest for possible biotechnological applications involving the processing of plant materials.


Assuntos
Clonagem Molecular , Expressão Gênica , Pichia , Talaromyces/enzimologia , alfa-Galactosidase/metabolismo , Sequência de Aminoácidos , Cromatografia de Afinidade , DNA Fúngico , Estabilidade Enzimática , Temperatura Alta , Concentração de Íons de Hidrogênio , Íntrons , Cinética , Dados de Sequência Molecular , Fases de Leitura Aberta , Sinais Direcionadores de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Especificidade por Substrato , Talaromyces/genética , alfa-Galactosidase/genética , alfa-Galactosidase/isolamento & purificação
16.
Protein Eng Des Sel ; 23(2): 69-79, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19951999

RESUMO

We report here a successful expression of a single-module GH-7 family cellobiohydrolase Cel7A from a thermophilic fungus Talaromyces emersonii (Te Cel7A) in Saccharomyces cerevisiae. The heterologous expression system allowed structure-guided protein engineering to improve the thermostability and activity of Te Cel7A. Altogether six different mutants aimed at introducing additional disulphide bridges to the catalytic module of Te Cel7A were designed. These included addition of five individual S-S bridges in or between the loops extending from the beta-sandwich fold, and located either near the active site tunnel or forming the tunnel in Te Cel7A. A triple mutant containing the three best S-S mutations was also engineered. Three out of five single S-S mutants all had clearly improved thermostability which was also reflected as improved Avicel hydrolysis efficiency at 75 degrees C. The best mutant was the triple mutant whose unfolding temperature was improved by 9 degrees C leading to efficient microcrystalline cellulose hydrolysis at 80 degrees C. All the additional S-S bonds contributed mainly to the thermostability of the Te Cel7A, but one of the mutants (N54C/P191C) also showed, somewhat surprisingly, improved activity even at room temperature.


Assuntos
Celulose 1,4-beta-Celobiosidase/genética , Celulose 1,4-beta-Celobiosidase/metabolismo , Mutagênese Sítio-Dirigida/métodos , Saccharomyces cerevisiae/genética , Talaromyces/enzimologia , Celulose/metabolismo , Celulose 1,4-beta-Celobiosidase/química , Expressão Gênica , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformação Proteica , Estabilidade Proteica , Temperatura
17.
Microbiology (Reading) ; 155(Pt 11): 3673-3682, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19556294

RESUMO

Fungi are capable of degrading proteins in their environment by secreting peptidases. However, the link between extracellular digestion and intracellular proteolysis has scarcely been investigated. Mycelial lysates of the filamentous fungus Talaromyces emersonii were screened for intracellular peptidase production. Five distinct proteolytic activities with specificity for the p-nitroanilide (pNA) peptides Suc-AAPF-pNA, Suc-AAA-pNA, K-pNA, F-pNA and P-pNA were identified. The native enzyme responsible for the removal of N-terminal proline residues was purified to homogeneity by ammonium sulfate fractionation followed by five successive chromatographic steps. The enzyme, termed Talaromyces emersonii prolyl aminopeptidase (TePAP), displayed a 50-fold specificity for cleaving N-terminal Pro-X (k(cat)/K(m)=2.1 x 10(6) M(-1) s(-1)) compared with Ala-X or Val-X bonds. This intracellular aminopeptidase was optimally active at pH 7.4 and 50 degrees C. Peptide sequencing facilitated the design of degenerate oligonucleotides from homologous sequences encoding putative fungal proline aminopeptidases, enabling subsequent cloning of the gene. TePAP was shown to be relatively uninhibited by classical serine peptidase inhibitors and to be sensitive to selected cysteine- and histidine-modifying reagents, yet gene sequence analysis identified the protein as a serine peptidase with an alpha/beta hydrolase fold. Northern analysis indicated that Tepap mRNA levels were regulated by the composition of the growth medium. Highest Tepap transcript levels were observed when the fungus was grown in medium containing glucose and the protein hydrolysate casitone. Interestingly, both the induction profile and substrate preference of this enzyme suggest potential co-operativity between extracellular and intracellular proteolysis in this organism. Gel filtration chromatography suggested that the enzyme exists as a 270 kDa homo-hexamer, whereas most bacterial prolyl aminopeptidases (PAPs) are monomers. Phylogenetic analysis of known PAPs revealed two diverse subfamilies that are distinguishable on the basis of primary and secondary structure and appear to correlate with the subunit composition of the native enzymes. Sequence comparisons revealed that PAPs with key conserved topological features are widespread in bacterial and fungal kingdoms, and this study identified many putative PAP candidates within sequenced genomes. This work represents, to our knowledge, the first detailed biochemical and molecular analysis of an inducible PAP from a eukaryote and the first intracellular peptidase isolated from the thermophilic fungus T. emersonii.


Assuntos
Aminopeptidases/metabolismo , Proteínas Fúngicas/metabolismo , Talaromyces/enzimologia , Sequência de Aminoácidos , Aminopeptidases/genética , Aminopeptidases/isolamento & purificação , Clonagem Molecular , DNA Fúngico/genética , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica , Temperatura Alta , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Filogenia , Estrutura Secundária de Proteína , Alinhamento de Sequência , Análise de Sequência de DNA , Especificidade por Substrato , Talaromyces/genética
18.
J Biosci ; 34(6): 881-90, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20093741

RESUMO

Xylose reductase is involved in the first step of the fungal pentose catabolic pathway. The gene encoding xylose reductase (Texr) was isolated from the thermophilic fungus Talaromyces emersonii, expressed in Escherichia coli and purified to homogeneity. Texr encodes a 320 amino acid protein with a molecular weight of 36 kDa, which exhibited high sequence identity with other xylose reductase sequences and was shown to be a member of the aldoketoreductase (AKR) superfamily with a preference for reduced nicotinamide adenine dinucleotide phosphate (NADPH) as coenzyme. Given the potential application of xylose reductase enzymes that preferentially utilize the reduced form of nicotinamide adenine dinucleotide (NADH) rather than NADPH in the fermentation of five carbon sugars by genetically engineered microorganisms, the coenzyme selectivity of TeXR was altered by site-directed mutagenesis. The TeXR K271R+N273D double mutant displayed an altered coenzyme preference with a 16-fold improvement in NADH utilization relative to the wild type and therefore has the potential to reduce redox imbalance of xylose fermentation in recombinant S. cerevisiae strains. Expression of Texr was shown to be inducible by the same carbon sources responsible for the induction of genes encoding enzymes relevant to lignocellulose hydrolysis, suggesting a coordinated expression of intracellular and extracellular enzymes relevant to hydrolysis and metabolism of pentose sugars in T. emersonii in adaptation to its natural habitat. This indicates a potential advantage in survival and response to a nutrient-poor environment.


Assuntos
Aldeído Redutase , Coenzimas/metabolismo , Proteínas Fúngicas , Especificidade por Substrato/genética , Talaromyces/enzimologia , Aldeído Redutase/genética , Aldeído Redutase/metabolismo , Sequência de Aminoácidos , Clonagem Molecular , Coenzimas/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , NAD/metabolismo , NADP/metabolismo , Alinhamento de Sequência , Xilose/metabolismo
19.
J Biol Chem ; 283(43): 29186-95, 2008 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-18687686

RESUMO

The thermophilic filamentous fungus Talaromyces emersonii secretes a variety of hydrolytic enzymes that are of interest for processing of biomass into fuel. Many carbohydrases have been isolated and characterized from this fungus, but no studies had been performed on peptidases. In this study, two acid-acting endopeptidases were isolated and characterized from the culture filtrate of T. emersonii. One of these enzymes was identified as a member of the recently classified glutamic peptidase family and was subsequently named T. emersonii glutamic peptidase 1 (TGP1). The second enzyme was identified as an aspartyl peptidase (PEP1). TGP1 was cloned and sequenced and shown to exhibit 64 and 47% protein identity to peptidases from Aspergillus niger and Scytalidium lignocolum, respectively. Substrate profiling of 16 peptides determined that TGP1 has broad specificity with a preference for large residues in the P1 site, particularly Met, Gln, Phe, Lys, Glu, and small amino acids at P1' such as Ala, Gly, Ser, or Thr. This enzyme efficiently cleaves an internally quenched fluorescent substrate containing the zymogen activation sequence (k(cat)/K(m)=2 x 10(5) m(-1) s(-1)). Maximum hydrolysis occurs at pH 3.4 and 50 degrees C. The reaction is strongly inhibited by a transition state peptide analog, TA1 (K(i)=1.5 nM), as well as a portion of the propeptide sequence, PT1 (K(i)=32 nM). Ex vivo studies show that hyphal extension of T. emersonii in complex media is unaffected by the aspartyl peptidase inhibitor pepstatin but is inhibited by TA1 and PT1. This study provides insight into the functional role of the glutamic peptidase TGP1 for growth of T. emersonii.


Assuntos
Endopeptidases/metabolismo , Endopeptidases/fisiologia , Regulação Fúngica da Expressão Gênica , Glutamina/química , Talaromyces/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Clonagem Molecular , Endopeptidases/química , Concentração de Íons de Hidrogênio , Cinética , Modelos Biológicos , Dados de Sequência Molecular , Pepstatinas/química , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Temperatura
20.
Mycol Res ; 111(Pt 7): 840-9, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17664063

RESUMO

Recent sequencing of a number of fungal genomes has revealed the presence of multiple putative beta-glucosidases. Here, we report the cloning of two beta-glucosidase genes (bg1 and aven1), which have very different biological functions and represent two of a number of beta-glucosidases from Talaromyces emersonii. The bg1 gene, encoding a putative intracellular beta-glucosidase, shows significant similarity to other fungal glucosidases from glycosyl hydrolase family 1, known to be involved in cellulose degradation. Solka floc, methyl-xylose, gentiobiose, beech wood xylan, and lactose induced expression of bg1, whereas glucose repressed expression. A second beta-glucosidase gene isolated from T. emersonii, aven1, encodes a putative avenacinase, an enzyme that deglucosylates the anti-fungal saponin, avenacin, rendering it less toxic to the fungus. This gene displays high homology with other fungal saponin-hydrolysing enzymes and beta-glucosidases within GH3. A putative secretory signal peptide of 21 amino acids was identified at the N-terminus of the predicted aven1 protein sequence suggesting that this enzyme is extracellular. Furthermore, T. emersonii cultivated on oat plant biomass was shown to deglucosylate avenacin. The presence of the avenacinase transcript was confirmed by RT-PCR on RNA extracted from mycelia grown in the presence of avenacin. The expression pattern of aven1 on various carbon sources was distinctly different from that of bg1. Only methyl-xylose and gentiobiose induced transcription of aven1. Gentiobiose induces synthesis of a number of cellulase genes by T. emersonii and it may be a possible candidate for the natural cellulase inducer observed in Penicillium purpurogenum. This work represents the first report of an avenacinase gene from a thermophilic, saprophytic fungal source, and suggests that this gene is not exclusive to plant pathogens.


Assuntos
Clonagem Molecular , Temperatura Alta , Talaromyces/enzimologia , beta-Glucosidase/classificação , beta-Glucosidase/metabolismo , Sequência de Aminoácidos , Meios de Cultura , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Dados de Sequência Molecular , Saponinas/metabolismo , Análise de Sequência de DNA , Talaromyces/genética , Talaromyces/crescimento & desenvolvimento , Talaromyces/metabolismo , beta-Glucosidase/química , beta-Glucosidase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA