Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Plant Sci ; 27(3): 247-254, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34756535

RESUMO

Plant roots are abundantly colonized by dark septate endophytic (DSE) fungi in virtually all ecosystems. DSE fungi are functionally heterogeneous and their relationships with plants range from antagonistic to mutualistic. Here, we consider the role of by-product benefits in DSE and other root-fungal symbioses. We compared host investments against symbiont-derived benefits for the host plant and categorized these benefits as by-products or benefits requiring reciprocal investment from the host. By-product benefits may provide the variability required for the evolution of invested mutualisms between the host and symbiont. We suggest that DSE could be considered as 'a by-product mutualist transitional phase' in the evolution of cooperative mycorrhizal symbionts from saprotrophic fungi.


Assuntos
Endófitos , Micorrizas , Ecossistema , Raízes de Plantas/microbiologia , Plantas , Simbiose
2.
Tree Physiol ; 39(6): 961-970, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31034022

RESUMO

Deciduous trees prepare for winter by breaking up chlorophyll and other nitrogen-rich compounds, which are resorbed for storage. Timing is important as senescence too early will waste growing season, while senescence too late risks the loss of the leaf resources to frost. While plants of temperate and boreal regions use decreasing day length as a cue of approaching winter, we show that decreasing temperature may also play a role in the variability of leaf senescence. We investigated the timing of autumnal decrease in photosynthetic efficiency and the concentration of chlorophyll and total carotenoids in nine common lilac (Syringa vulgaris L.) trees over two consecutive years. Day length explained a greater proportion of photosynthetic efficiency, but temperature had a significant additional role, which seems to be related to individual differences. Precipitation and cloudiness did not explain photosynthetic efficiency. Photosynthetic efficiency was higher outside the canopy and at high and middle elevations than inside and low elevations of the canopy. Late onset of senescence led to a steeper decline in photosynthetic efficiency than early senescence. The onset of decline in photosynthetic efficiency differed between years, but there was no difference in the steepest rate of change in photosynthetic efficiency with respect to sampling year or location. Contributions of day-length vs temperature to leaf senescence have important consequences for the adaptability and invasibility of deciduous trees in a changing climate, especially at the edge of species distributions.


Assuntos
Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Syringa/fisiologia , Árvores/fisiologia , Carotenoides/metabolismo , Clorofila/metabolismo , Estações do Ano , Luz Solar , Temperatura
3.
Ecology ; 100(5): e02667, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30913306

RESUMO

Biomass removal by herbivores usually incurs a fitness cost for the attacked plants, with the total cost per unit lost tissue depending on the value of the removed tissue (i.e., how costly it is to be replaced by regrowth). Optimal defense theory, first outlined in the 1960s and 1970s, predicted that these fitness costs result in an arms race between plants and herbivores, in which selection favors resistance strategies that either repel herbivores through morphological and chemical resistance traits in order to reduce their consumption, or result in enemy escape through rapid growth or by timing the growth or flowering to the periods when herbivores are absent. Such resistance against herbivores would most likely evolve when herbivores are abundant, cause extensive damage, and consume valuable plant tissues. The purpose of this Special Feature is to celebrate the 30th anniversary of the phenomenon of overcompensation, specifically, where the finding has brought us and where it is leading us 30 yr later. We first provide a short overview of how the phenomenon of overcompensation has led to broader studies on plant tolerance to herbivory, summarize key findings, and then discuss some promising new directions in light of six featured research papers.


Assuntos
Herbivoria , Plantas , Biomassa , Fenótipo
4.
Proc Biol Sci ; 285(1883)2018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-30051863

RESUMO

Widespread use of neonicotinoid insecticides, such as imidacloprid, is often associated with diminishing populations of bees; this loss of pollinators presents a concern for food security and may cause unpredictable changes in ecological networks. However, little is known about the potential behavioural mechanisms behind the neonicotinoid-associated pollinator decline. We quantified the effects of low-dose (1 ppb) imidacloprid exposure on the foraging behaviour of bumblebees (Bombus terrestris). Individual bumblebees were released into a flight arena containing three patches of robotic flowers whose colour (yellow, orange, blue) indicated whether the flower delivered a reward (sugar solution). Exposure to imidacloprid had no significant effect on measures of bumblebee physical performance (such as flight speed) or learning (identifying rewarding flowers). However, pesticide-treated bumblebees had reduced foraging motivation compared with the control bumblebees, as they visited fewer robotic flowers, were slower to start foraging and did not visit all three flower colours as often. Neonicotinoid concentrations of 1 ppb, often reported in plant nectar near agricultural lands, can thus affect the foraging behaviour of bumblebees. Even without a notable impact on flight performance and learning, a reduction in foraging motivation could explain the poor performance of colonies of bumblebees exposed to neonicotinoids.


Assuntos
Abelhas/efeitos dos fármacos , Inseticidas/efeitos adversos , Neonicotinoides/efeitos adversos , Nitrocompostos/efeitos adversos , Néctar de Plantas/química , Pólen/química , Animais , Abelhas/fisiologia , Relação Dose-Resposta a Droga , Comportamento Alimentar/efeitos dos fármacos , Aprendizagem , Motivação/efeitos dos fármacos
5.
Ecol Lett ; 21(5): 724-733, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29575384

RESUMO

Vegetative dormancy, that is the temporary absence of aboveground growth for ≥ 1 year, is paradoxical, because plants cannot photosynthesise or flower during dormant periods. We test ecological and evolutionary hypotheses for its widespread persistence. We show that dormancy has evolved numerous times. Most species displaying dormancy exhibit life-history costs of sprouting, and of dormancy. Short-lived and mycoheterotrophic species have higher proportions of dormant plants than long-lived species and species with other nutritional modes. Foliage loss is associated with higher future dormancy levels, suggesting that carbon limitation promotes dormancy. Maximum dormancy duration is shorter under higher precipitation and at higher latitudes, the latter suggesting an important role for competition or herbivory. Study length affects estimates of some demographic parameters. Our results identify life historical and environmental drivers of dormancy. We also highlight the evolutionary importance of the little understood costs of sprouting and growth, latitudinal stress gradients and mixed nutritional modes.


Assuntos
Evolução Biológica , Herbivoria , Demografia , Flores
6.
Ecology ; 99(2): 259-269, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29205298

RESUMO

As a compensatory response to herbivory, plants may branch vigorously when the growth of dormant meristems is triggered by shoot damage. Undamaged plants, on the other hand, often restrain branching, and this limitation on growth can be considered a cost of tolerance to herbivory. Restrained branching is caused by apical dominance and may, alternatively, be associated with fitness benefits in competitive environments that favor fast vertical growth. To test these hypotheses regarding selection for restrained branching, we compared the performance of two subspecies of the biennial grassland herb Gentianella campestris; the tall, apically dominant ssp. campestris and the short, multi-stemmed ssp. islandica, which shows reduced apical dominance. For both subspecies, we manipulated the height of surrounding vegetation (competition) and damage intensity in grasslands of differing productivity (high, medium, low), and examined population growth rates using matrix population models combined with life table response experiments. In the absence of damage, ssp. campestris exhibited a higher population growth rate than ssp. islandica in the tallest vegetation, however with the growth rate still being below one. In the medium and low productivity environments where the vegetation was shorter, the population growth rate of ssp. islandica was considerably higher than that of ssp. campestris as long as no more than about 50% of the plants were damaged. When plants were damaged, the apically dominant ssp. campestris showed a positive population growth rate (λ > 1) and often overcompensatory seed production in all productivity levels, while ssp. islandica showed no compensation and therefore the population was predicted to decline (λ < 1). We conclude that restrained branching in Gentianella cannot be selected for by competition alone, but that episodes of apical damage are required to maintain the trait. Furthermore, because of the costs of restrained branching, apical dominance should be selected against in grasslands where competition and disturbance are low.


Assuntos
Asteraceae , Gentianella , Herbivoria , Meristema , Sementes
7.
ScientificWorldJournal ; 2015: 482161, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25861675

RESUMO

Food deception as a pollination strategy has inspired many studies over the last few decades. Pollinator deception has evolved in many orchids possibly to enhance outcrossing. Food-deceptive orchids usually have low pollinator visitation rates as compared to rewarding species. They may benefit in visitations from the presence (magnet-species hypothesis) or, alternatively, absence of coflowering rewarding species (competition hypothesis). We present data on pollinator visitations on a deceptive, terrestrial orchid Calypso bulbosa, a species with a single flower per plant and whose flowering period partly overlaps with rewarding, early flowering willows (Salix sp.) and later-flowering bilberry (Vaccinium myrtillus). When surveying inactive bumblebee queens on willows in cool weather, about 7% of them carried Calypso pollinia. Most common bumblebee species appeared to visit and thus pollinate Calypso. Bumblebees typically visited one to three Calypso flowers before flying away, providing some support for the outcrossing hypothesis. We conclude that, regarding the pollinations strategy, both magnet-species and competition hypotheses have a role in the pollination of Calypso, but on different spatial scales. On a large scale rewarding species are important for attracting pollinators to a given region, but on a small scale absence of competition ensures sufficient pollination rate for the deceptive orchid.


Assuntos
Abelhas/fisiologia , Flores , Orchidaceae/fisiologia , Polinização , Animais
8.
Microb Ecol ; 69(4): 788-97, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25687127

RESUMO

Climate change has important implications on the abundance and range of insect pests in forest ecosystems. We studied responses of root-associated fungal communities to defoliation of mountain birch hosts by a massive geometrid moth outbreak through 454 pyrosequencing of tagged amplicons of the ITS2 rDNA region. We compared fungal diversity and community composition at three levels of moth defoliation (intact control, full defoliation in one season, full defoliation in two or more seasons), replicated in three localities. Defoliation caused dramatic shifts in functional and taxonomic community composition of root-associated fungi. Differentially defoliated mountain birch roots harbored distinct fungal communities, which correlated with increasing soil nutrients and decreasing amount of host trees with green foliar mass. Ectomycorrhizal fungi (EMF) abundance and richness declined by 70-80 % with increasing defoliation intensity, while saprotrophic and endophytic fungi seemed to benefit from defoliation. Moth herbivory also reduced dominance of Basidiomycota in the roots due to loss of basidiomycete EMF and increases in functionally unknown Ascomycota. Our results demonstrate the top-down control of belowground fungal communities by aboveground herbivory and suggest a marked reduction in the carbon flow from plants to soil fungi following defoliation. These results are among the first to provide evidence on cascading effects of natural herbivory on tree root-associated fungi at an ecosystem scale.


Assuntos
Betula/microbiologia , Mariposas/fisiologia , Micorrizas/fisiologia , Raízes de Plantas/microbiologia , Animais , Betula/crescimento & desenvolvimento , Comportamento Alimentar , Finlândia , Florestas , Dados de Sequência Molecular , Micorrizas/genética , Raízes de Plantas/crescimento & desenvolvimento , Análise de Sequência de DNA , Simbiose
9.
PLoS One ; 8(7): e69249, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874924

RESUMO

It is well recognized, that outcomes of mutualistic plant-microorganism interactions are often context dependent and can range from mutualistic to antagonistic depending on conditions. Instead, seemingly pathogenic associations are generally considered only harmful to plants. The ergot fungus (Claviceps purpurea) is a common seed pathogen of grasses and cereals. Ergot sclerotia contain alkaloids which can cause severe toxicity in mammals when ingested, and thus the fungal infection might provide protection for the host plant against mammalian herbivores. Theoretically, the net effect of ergot infection would positively affect host seed set if the cost is not too high and the defensive effect is strong enough. According to our empirical data, this situation is plausible. First, we found no statistically significant seed loss in wild red fescue (Festuca rubra) inflorescences due to ergot infection, but the seed succession decreased along increasing number of sclerotia. Second, in a food choice experiment, sheep showed avoidance against forage containing ergot. Third, the frequency of ergot-infected inflorescences was higher in sheep pastures than surrounding ungrazed areas, indicating a protective effect against mammalian grazing. We conclude that, although ergot can primarily be categorized as a plant pathogen, ergot infection may sometimes represent indirect beneficial effects for the host plant. Ergot may thus serve as a conditional defensive mutualist for its host grass, and the pathogenic interaction may range from antagonistic to mutualistic depending on the situation.


Assuntos
Claviceps/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Poaceae/microbiologia , Simbiose/fisiologia , Ração Animal/microbiologia , Animais , Claviceps/patogenicidade , Festuca/microbiologia , Festuca/fisiologia , Contaminação de Alimentos , Aptidão Genética/fisiologia , Herbivoria/fisiologia , Doenças das Plantas/microbiologia , Ovinos/fisiologia
10.
Conserv Biol ; 27(3): 552-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23458476

RESUMO

Short-term surveys are useful in conservation of species if they can be used to reliably predict the long-term fate of populations. However, statistical evaluations of reliability are rare. We studied how well short-term demographic data (1999-2002) of tartar catchfly (Silene tatarica), a perennial riparian plant, projected the fate and growth of 23 populations of this species up to the year 2010. Surveyed populations occurred along a river with natural flood dynamics and along a regulated river. Riparian plant populations are affected by flooding, which maintains unvegetated shores, while forest succession proceeds in areas with little flooding. Flooding is less severe along the regulated river, and vegetation overgrowth reduces abundance of tartar catchfly on unvegetated shores. We built matrix models to calculate population growth rates and estimated times to population extinction in natural and in regulated rivers, 13 and 10 populations, respectively. Models predicted population survival well (model predictions matched observed survival in 91% of populations) and accurately predicted abundance increases and decreases in 65% of populations. The observed and projected population growth rates differed significantly in all but 3 populations. In most cases, the model overestimated population growth. Model predictions did not improve when data from more years were used (1999-2006). In the regulated river, the poorest model predictions occurred in areas where cover of other plant species changed the fastest. Although vegetation cover increased in most populations, it decreased in 4 populations along the natural river. Our results highlight the need to combine disturbance and succession dynamics in demographic models and the importance of habitat management for species survival along regulated rivers.


Assuntos
Silene/fisiologia , Conservação dos Recursos Naturais/métodos , Ecossistema , Modelos Teóricos , Densidade Demográfica , Dinâmica Populacional , Rios , Fatores de Tempo
11.
Nat Commun ; 3: 611, 2012 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-22215086

RESUMO

Killing conspecific infants (infanticide) is among the most puzzling phenomena in nature. Stable polymorphism in such behaviour could be maintained by negative frequency-dependent selection (benefit of rare types). However, it is currently unknown whether there is genetic polymorphism in infanticidal behaviour or whether infanticide may have any fitness advantages when rare. Here we show genetic polymorphism in non-parental infanticide. Our novel invasion experiment confirms negative frequency-dependent selection in wild bank vole populations, where resource benefits allow an infanticidal strategy to invade a population of non-infanticidal individuals. The results show that infanticidal behaviour is highly heritable with genetic correlation across the sexes. Thus, a positive correlative response in male behaviour is expected when selection operates on females only and vice versa. Our results, on one hand, demonstrate potential benefits of infanticide, and on the other, they open a new perspective of correlative evolution of infanticide in females and males.


Assuntos
Agressão , Comportamento Animal , Polimorfismo Genético , Animais , Animais Recém-Nascidos , Arvicolinae , Feminino , Modelos Lineares , Masculino , Comportamento Materno , Modelos Estatísticos , Mutação , Comportamento Paterno , Fatores Sexuais
12.
Ecology ; 92(7): 1538-43, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21870627

RESUMO

In plants, prolonged dormancy is often considered a response to resource depletion or environmental stress that comes at a fitness cost. However, apparent costs of dormancy could reflect the state in which plants entered dormancy, rather than effects of dormancy per se. We tested this hypothesis for a terrestrial orchid, Epipactis atrorubens, by analyzing differences in vital rates of dormant and emergent plants using generalized linear mixed models, applied to eight years of demographic data. Dormant E. atrorubens plants did not form one homogeneous stage class. Instead, the vital rates of dormant plants mirrored performance of plants in their life stage before dormancy. Plants emerging from dormancy were slightly (albeit only marginally statistically significantly) larger than plants transitioning from the matching aboveground stage class, especially for smaller and younger stage classes. Because small plants were most likely to go dormant, plants emerging from dormancy were also smaller than average, if one were to compare all previously dormant plants to all previously emergent plants. Therefore, misclassifying all dormant plants into a single stage class changes whether we view dormancy as intrinsically costly, in terms of future performance upon emergence. We suggest that prolonged dormancy may be a form of phenotypic plasticity in which plants distribute their performance and reproductive effort through time, rather than a simple stress response.


Assuntos
Ecossistema , Orchidaceae/fisiologia , Fatores de Tempo
13.
Tree Physiol ; 29(2): 207-16, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19203946

RESUMO

Phenolic compounds often accumulate in foliar tissues of deciduous woody plants in response to previous insect defoliation, but similar responses have been observed infrequently in evergreen conifers. We studied the effects of defoliation on the foliar chemistry of Scots pine (Pinus sylvestris L.) and cocoon mass, and survival of the pine sawfly (Diprion pini L.). In two successive years, needles were excised early in the season leaving only the current-year shoot intact (defoliated trees); untreated entire shoots served as controls (control trees). A year after the second defoliation, pine sawfly larvae were transferred to the trees. Delayed induced resistance in Scots pine in response to defoliation was indicated by (1) reduced cocoon mass in defoliated trees and (2) increased concentrations of phenolics and soluble condensed tannins in the foliage of defoliated trees compared with controls. Myricetin-3-galactoside, which showed the strongest induced response (104% and 71% increase in current-year (C) and previous-year (C+1) needles) of the compounds analyzed, also entered the regression model explaining variation in sawfly performance. Other compounds that entered the model, e.g., (+)-catechin, showed weaker responses to defoliation than myricetin-3-galactoside. Hyperin, condensed tannins and quercitrin showed strong induced responses in C or C+1 needles, or both, but these compounds did not explain the variation in sawfly performance. Accumulation of phenolics is sometimes associated with the reduced foliage nitrogen (N) concentrations in deciduous trees, and our results suggest that this may also be the case in evergreen conifers. Based on the earlier findings that defoliation reduces needle N concentration and N deficiency results in the accumulation of the same phenolic compounds, i.e., myricetin and quercetin glycosides, and soluble condensed tannins, we suggest that the accumulation of phenolics in defoliated trees occurred in response to the reduced foliar N concentration.


Assuntos
Interações Hospedeiro-Parasita/fisiologia , Himenópteros , Nitrogênio/metabolismo , Fenóis/metabolismo , Pinus sylvestris/metabolismo , Doenças das Plantas/parasitologia , Adaptação Fisiológica , Animais , Himenópteros/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Estresse Fisiológico , Taninos/análise , Árvores/química
14.
Oecologia ; 159(3): 505-13, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19066969

RESUMO

Regional persistence of species requires a positive balance between colonizations and local extinctions. In this study, we examined the amount of colonizations and extinctions and their likelihood as a function of patch size, isolation, and habitat characteristics of a riparian perennial plant, Erigeron acer subsp. decoloratus. We also studied the importance of patch dynamics to the regional population growth. Over five successive years, we counted the number of plant patches along 43 km of riverside. Most patches were small in area and population size. The annual finite growth rate in the number of patches varied between years, but the geometric mean was close to 1.0, indicating a viable patch network in spite of local extinctions. Extinction rate was highest on steep slopes and for small patches with few individual plants and a small patch area. When the patches were classified into different stage classes, the most common fate was stasis, i.e., the patch remained at the same stage. Patch survival and local, within-patch dynamics were most important during this five-year period. Between-patch dynamics (including colonization for example) accounted for 5-10% of annual transitions. The overall dynamics were relatively similar to those of other plant species subjected to riparian disturbance regimes. In the long run, the survival of the species depends on how well it is able to escape from competition from forest and meadow species and track the availability of suitable habitats. This kind of habitat tracking differs from classical metapopulation dynamics. In the former, local extinctions occur as a consequence of adverse changes in the habitat and recolonizations are rare, whereas metapopulation models assume a highly persistent habitat structure with frequent recolonizations. In this respect, the regional dynamics of perennial plants in disturbed riparian habitats may differ from classical metapopulations.


Assuntos
Ecossistema , Erigeron/crescimento & desenvolvimento , Extinção Biológica
15.
Oecologia ; 156(1): 117-23, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18236083

RESUMO

Growth of the host and its symbiont is often closely linked and so host damage may negatively affect the symbiont. While negative effects of aboveground herbivory on belowground fungal symbionts have been reported in several woody and herbaceous plants, here we report, for the first time, on differential effects of the timing of foliar damage on ectomycorrhizal (ECM) fungal symbionts. The phenologies of host trees and their ECM symbionts differ; the growth of the latter mainly occurs later in the season than that of the host. By removing Scots pine foliage on three occasions during the growing season (early, middle and late season defoliation) in one, two or three successive years, we demonstrate that, despite the differences in the seasonal growth dynamics of the tree and the symbionts, ECM fungi follow the host's response patterns to defoliation. Early season defoliation was most detrimental to the host and resulted in an increased proportion of low-biomass ectomycorrhizae which are presumed to require less carbon from the host tree. This may improve the recovery of the host, as most roots remained mycorrhizal in spite of the defoliation treatments repeated in successive years.


Assuntos
Fungos/fisiologia , Pinus sylvestris/microbiologia , Folhas de Planta , Raízes de Plantas/microbiologia , Pinus sylvestris/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento
16.
Conserv Biol ; 20(3): 844-52, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16909576

RESUMO

In transient environments, where local extinctions occur as a result of destruction or deterioration of the local habitat, the long-term persistence of a species requires successful colonizations at new, suitable sites. This kind of habitat tracking should be associated with the asynchronous dynamics of local populations, and it can be especially important for the conservation of rare plant species in riparian habitats. We determined spatiotemporal variation in the demography of the perennial Silene tatarica (L.) Pers. in 15 populations (1998-2003) located in periodically disturbed riparian habitats. The habitats differed according to their morphology (flat shores, slopes) and the amount of bare ground (open, intermediate, closed) along a successional gradient. We used elasticity and life-table response analyses and stochastic simulations to study the variation in population demography. Finite population growth rate was higher in intermediate habitats than in open and closed habitats. In stochastic simulations population size increased in most cases, but four populations were projected to become extinct within 12-70 years. The viability of local populations depended most on the survival and growth of juvenile individuals and on the fecundity of large fertile individuals. On a regional scale, the persistence of this species will require a viable network of local populations as protection against local extinctions caused by natural disturbances and succession. Accordingly, the long-term persistence of riparian species may depend on habitat changes; thus, their conservation requires maintenance of natural disturbance dynamics. Along regulated rivers, management activities such as the creation of open habitats for new colonization should be implemented. Similarly, these activities can be rather general requirements for the conservation of endangered species dependent on transient habitats along successional gradients.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Modelos Biológicos , Silene/fisiologia , Simulação por Computador , Modelos Estatísticos , Dinâmica Populacional , Rios , Processos Estocásticos , Fatores de Tempo
17.
Oecologia ; 147(2): 253-60, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16187104

RESUMO

A basic idea of plant defences is that a plant should gain protection from its own defence. In addition, there is evidence that defence traits of the neighbouring plants can influence the degree of protection of an individual plant. These associational effects depend in part on the spatial scale of herbivore selectivity. A strong between-patch selectivity together with a weak within-patch selectivity leads to a situation where a palatable plant could avoid being grazed by growing in a patch with unpalatable plants, which is referred to as associational defence. Quite different associational effects will come about if the herbivore instead is unselective between patches and selective within a patch. We studied these effects in a manipulative experiment where we followed the food choice of fallow deer when they encountered two patches of overall different quality. One of the two patches consisted of pellets with low-tannin concentration in seven out of eight buckets and with high concentration in the remaining bucket. The other patch instead had seven high- and one low-tannin bucket. We performed the experiment both with individuals one at a time and with a group of 16-17 deer. We found that the deer were unselective between patches, but selective within a patch, and that the single low-tannin bucket among seven high-tannin buckets was used more than a low-tannin bucket among other low-tannin buckets. This corresponds to a situation where a palatable plant that grows among unpalatable plants is attacked more than if it was growing among its own kind, and for this effect we suggest the term neighbour contrast susceptibility, which is the opposite of associational defence. We also found that the high-tannin bucket in the less defended patch was less used than the high-tannin buckets in the other patch, which corresponds to neighbour contrast defence. The neighbour contrast susceptibility was present both for individual and group foraging, but the strength of the effect was somewhat weaker for groups due to weaker within-patch selectivity.


Assuntos
Cervos/fisiologia , Comportamento Alimentar/fisiologia , Plantas/metabolismo , Taninos/metabolismo , Animais , Feminino , Preferências Alimentares/fisiologia
18.
Oecologia ; 140(2): 234-40, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15148601

RESUMO

Boreal forest trees are highly dependent on root-colonizing mycorrhizal fungi. Since the maintenance of mycorrhizal symbiosis implies a significant carbon cost for the host plant, the loss of photosynthetic leaf area due to herbivory is expected to reduce the host investment in mycorrhizae. We tested this hypothesis in a common garden experiment by exposing ectomycorrhizal white birch (Betula pubescens Ehrh.) seedlings to simulated insect defoliation of 50 or 100% intensity during either the previous or the current summer or repeatedly during both seasons before harvest. The shoot and root growth of the seedlings were distinctly reduced by both 100% defoliation and repeated 50% defoliation, and they were more strongly affected by previous-year than current-year defoliation. The root to shoot ratio significantly decreased after 100% defoliation, indicating reduced proportional allocation to the roots. Ergosterol concentration (i.e. fungal biomass) in the fine roots decreased by 100% defoliation conducted either in the year of harvest or in both years. No such decrease occurred following the 100% defoliation conducted in the previous year, indicating the importance of current photosynthates for fungal symbionts. The trend was similar in the colonization percentage of thick-mantled mycorrhizae in the roots, the most marked decline occurring in the repeatedly defoliated seedlings. The present results thus support the prediction that the plant investment in ectomycorrhizae may decline as a response to foliage loss. Moreover, the colonization percentage of thick-mantled mycorrhizae correlated positively with the ratio of leaf to heterotrophic plant biomass in the defoliated birch seedlings, but not in the control ones. This tends to indicate a stronger carbon limitation of ectomycorrhizal colonization in defoliated seedlings.


Assuntos
Betula/crescimento & desenvolvimento , Carbono/metabolismo , Micorrizas/metabolismo , Folhas de Planta/fisiologia , Simbiose , Análise de Variância , Carboidratos/análise , Cromatografia Líquida de Alta Pressão , Ergosterol/metabolismo , Micorrizas/citologia , Micorrizas/crescimento & desenvolvimento
19.
J Chem Ecol ; 29(8): 1905-18, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12956514

RESUMO

Effects of artificial defoliation on defensive needle chemistry in Scots pine (Pitus sylvestris L.) were evaluated with particular emphasis on peroxidases, phenolic compounds, soluble sugars, polyamines, and foliar nitrogen levels. The study was carried out on a nutrient-poor Scots pine stand with 8- to 25-year-old trees. Defoliation treatment consisted of repeated defoliation in two successive years with respective control trees. Defoliation was done before needle flushing by removing all mature needles. Guaiacol peroxidase activity increased in the needles after the first defoliation. The difference between treatments diminished towards autumn, and disappeared before the second defoliation in the next summer. After the second defoliation, the activities showed a similar trend. Apparently, peroxidases are involved in inducible chemical changes and recovery reactions that occur in the intact needles shortly after defoliation. After the second defoliation, total nitrogen concentration in the current year needles was about 20% lower, and free putrescine (a polyamine) concentration was 40% lower in the defoliated trees than in control needles. These changes indicate a loss of nitrogen due to defoliation. Specific phenolic compounds such as quercitrin, (+)-catechin, and two catechin derivatives increased in current year needles in response to defoliation. Accumulation of starch and sucrose in the current year needles of repeatedly defoliated trees may imply decreased assimilate transport. The results are indicative that changes in needle phytochemistry in response to defoliation accompany changes in needle nitrogen metabolism.


Assuntos
Adaptação Fisiológica , Nitrogênio/metabolismo , Peroxidases/análise , Fenóis/análise , Pinus/química , Poliaminas/análise , Animais , Metabolismo dos Carboidratos , Comportamento Alimentar , Insetos , Folhas de Planta/química
20.
Evolution ; 57(3): 509-17, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12703940

RESUMO

This study partitions selection in a natural metapopulation of a riparian plant species, Silene tatarica, into individual- and patch-level components by using contextual analysis, in which a patch refers to a spatially distinct stand of individual plants. We estimated selection gradients for two morphological characters (plant height and number of stems), their respective patch means, and plant density with respect to reproductive success in a two-year study. The approach was also extended to partition selection separately within habitats with varying degrees of exposure to river disturbances and herbivory. The selection differentials and gradients for plant height were positive at both individual and patch levels, with selection forces highest in the closed habitat with low exposure to disturbance. This pattern suggests that local groups with taller than average plants are more visible to pollinators than to groups that are shorter than average plants; and, within patches, individuals with short stature are visited less often than taller ones. Selection on the number of stems was in opposition at individual and patch levels. At the individual level the character was selected toward higher values, whereas selection at the patch-level favored smaller mean number of stems. The strength of the latter component was associated with the intensity of herbivory in different habitats, suggesting that the patch-level selection against a large number of stems might be due to high attractiveness of such patches to the main herbivore, reindeer. Consequently, direction and strength of selection in spatially structured populations may depend significantly on fitness effects arising at the group level.


Assuntos
Seleção Genética , Silene/genética , Clima , Meio Ambiente , Finlândia , Geografia , Fenótipo , Pólen/fisiologia , Estações do Ano , Silene/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...