Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Lab Chip ; 3(2): 67-72, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-15100784

RESUMO

This study presents coupling of a poly(dimethylsiloxane) (PDMS) micro-chip with electrospray ionization-mass spectrometry (ESI-MS). Stable electrospray is generated directly from a PDMS micro-channel without pressure assistance. Hydrophobic PDMS aids the formation of a small Taylor cone in the ESI process and facilitates straightforward and low-cost batch production of the ESI-MS chips. PDMS chips were replicated with masters fabricated from SU-8 negative photoresist. A novel coating, an amorphous diamond-like carbon-poly(dimethylsiloxane) hybrid, deposited on the masters by the filtered pulsed plasma arc discharge technique, improved significantly the lifetime of the masters in PDMS replications. PDMS chip fabrication conditions were observed to affect the amount of background peaks in the MS spectra. With an optimized fabrication process (PDMS curing agent/silicone elastomer base ratio of 1/8 (w/w), curing at 70 degree C for 48 h) low background spectra were recorded for the analytes. The performance of PDMS devices was examined in the ESI-MS analysis of some pharmaceutical compounds and amino acids.


Assuntos
Carbono/química , Materiais Revestidos Biocompatíveis/química , Dimetilpolisiloxanos/química , Psilocibina/análogos & derivados , Silicones/química , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Arginina/análise , Buprenorfina/análise , Desenho de Equipamento , Histidina/análise , Psilocibina/análise
2.
Lab Chip ; 2(4): 247-53, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15100819

RESUMO

This study focuses on porous silicon (pSi) fabrication methods and properties for desorption ionization on silicon mass spectrometry (DIOS-MS). PSi was prepared using electrochemical etching of n-type silicon in HF-ethanol solution. Porous areas were defined by a double-sided illumination arrangement: front-side porous areas were masked by a stencil mask, eliminating the need for standard photolithography, and backside illumination was used for the backside ohmic contact. Backside illumination improved the uniformity of the porosified areas. Porosification conditions, surface derivatizations and storage conditions were explored to optimize pSi area, pore size and pore depth. Chemical derivatization of the pSi surfaces improved the DIOS-MS performance providing better ionization efficiency and signal stability with lower laser energy. Droplet spreading and drying patterns on pSi were also examined. Pore sizes of 50-200 nm were found to be optimal for droplet evaporation and pore filling with the sample liquid, as measured by DIOS efficiency. With DIOS, significantly better detection sensitivity was obtained (e.g. 150 fmol for midazolam) than with desorption ionization from a standard MALDI steel plate without matrix addition (30 pmol for midazolam). Also the noise that disturbs the detection of low-molecular weight compounds at m/z < 500 with MALDI could be clearly reduced with DIOS. Low background MS spectra and good detection sensitivity at the 100-150 fmol level for pharmaceutical compounds were achieved with DIOS-MS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA