Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 66(7): 4588-4602, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37010933

RESUMO

Protein kinase C (PKC) modulators hold therapeutic potential for various diseases, including cancer, heart failure, and Alzheimer's disease. Targeting the C1 domain of PKC represents a promising strategy; the available protein structures warrant the design of PKC-targeted ligands via a structure-based approach. However, the PKC C1 domain penetrates the lipid membrane during binding, complicating the design of drug candidates. The standard docking-scoring approach for PKC lacks information regarding the dynamics and the membrane environment. Molecular dynamics (MD) simulations with PKC, ligands, and membranes have been used to address these shortcomings. Previously, we observed that less computationally intensive simulations of just ligand-membrane interactions may help elucidate C1 domain-binding prospects. Here, we present the design, synthesis, and biological evaluation of new pyridine-based PKC agonists implementing an enhanced workflow with ligand-membrane MD simulations. This workflow holds promise to expand the approach in drug design for ligands targeted to weakly membrane-associated proteins.


Assuntos
Desenho de Fármacos , Simulação de Dinâmica Molecular , Proteína Quinase C , Desenho de Fármacos/métodos , Ligantes , Ligação Proteica , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/química , Piridinas/farmacologia , Inibidores de Proteínas Quinases/química
2.
J Pharmacol Exp Ther ; 380(1): 54-62, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34697230

RESUMO

Colorectal cancer is the third most commonly occurring cancer in men and the second in women. The global burden of colorectal cancer is projected to increase to over 2 million new cases with over 1 million deaths within the next 10 years, and there is a great need for new compounds with novel mechanisms of action. Our group has developed protein kinase C (PKC)-modulating isophthalic acid derivatives that induce cytotoxicity toward human cervical and prostate cancer cell lines. In this study, we investigated the effects of 5-(hydroxymethyl)isophthalate 1a3 (HMI-1a3) on colorectal cancer cell lines (Caco-2, Colo205, and HT29). HMI-1a3 inhibited cell proliferation, decreased cell viability, and induced an apoptotic response in all studied cell lines. These effects, however, were independent of PKC. Using serine/threonine kinome profiling and pharmacological kinase inhibitors, we identified activation of the cAMP/PKA pathway as a new mechanism of action for HMI-1a3-induced anticancer activity in colorectal cancer cell lines. Our current results strengthen the hypothesis for HMI-1a3 as a potential anticancer agent against various malignancies. SIGNIFICANCE STATEMENT: Colorectal cancer (CRC) is a common solid organ malignancy. This study demonstrates that the protein kinase C (PKC)-C1 domain-targeted isophthalatic acid derivative 5-(hydroxymethyl)isophthalate 1a3 (HMI-1a3) has anticancer activity on CRC cell lines independently of PKC. We identified PKA activation as a mechanism of HMI-1a3-induced anticancer effects. The results reveal a new anticancer mechanism of action for the partial PKC agonist HMI-1a3 and thus provide new insights for the development of PKC and PKA modulators for cancer therapy.


Assuntos
Neoplasias Colorretais/metabolismo , Ácidos Ftálicos/farmacologia , Apoptose/efeitos dos fármacos , Células CACO-2 , Proliferação de Células/efeitos dos fármacos , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células HT29 , Humanos
3.
J Parkinsons Dis ; 11(3): 1023-1046, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34024778

RESUMO

BACKGROUND: Parkinson's disease (PD) is a progressive neurological disorder where loss of dopamine neurons in the substantia nigra and dopamine depletion in the striatum cause characteristic motor symptoms. Currently, no treatment is able to halt the progression of PD. Glial cell line-derived neurotrophic factor (GDNF) rescues degenerating dopamine neurons both in vitro and in animal models of PD. When tested in PD patients, however, the outcomes from intracranial GDNF infusion paradigms have been inconclusive, mainly due to poor pharmacokinetic properties. OBJECTIVE: We have developed drug-like small molecules, named BT compounds that activate signaling through GDNF's receptor, the transmembrane receptor tyrosine kinase RET, both in vitro and in vivo and are able to penetrate through the blood-brain barrier. Here we evaluated the properties of BT44, a second generation RET agonist, in immortalized cells, dopamine neurons and rat 6-hydroxydopamine model of PD. METHODS: We used biochemical, immunohistochemical and behavioral methods to evaluate the effects of BT44 on dopamine system in vitro and in vivo. RESULTS: BT44 selectively activated RET and intracellular pro-survival AKT and MAPK signaling pathways in immortalized cells. In primary midbrain dopamine neurons cultured in serum-deprived conditions, BT44 promoted the survival of the neurons derived from wild-type, but not from RET knockout mice. BT44 also protected cultured wild-type dopamine neurons from MPP+-induced toxicity. In a rat 6-hydroxydopamine model of PD, BT44 reduced motor imbalance and seemed to protect dopaminergic fibers in the striatum. CONCLUSION: BT44 holds potential for further development into a novel, possibly disease-modifying, therapy for PD.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Animais , Dopamina , Neurônios Dopaminérgicos/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Humanos , Camundongos , Fármacos Neuroprotetores/farmacologia , Oxidopamina/toxicidade , Proteínas Proto-Oncogênicas c-ret , Ratos , Substância Negra/metabolismo
4.
J Chem Inf Model ; 60(11): 5624-5633, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32915560

RESUMO

Increasing protein kinase C (PKC) activity is of potential therapeutic value. Its activation involves an interaction between the C1 domain and diacylglycerol (DAG) at intracellular membrane surfaces; DAG mimetics hold promise as new drugs. We previously developed the isophthalate derivative HMI-1a3, an effective but highly lipophilic (clogP = 6.46) DAG mimetic. Although a less lipophilic pyrimidine analog, PYR-1gP (clogP = 3.30), gave positive results in computational docking, it unexpectedly presented greatly diminished binding to PKC in vitro. Through more rigorous computational molecular modeling, we reveal that, unlike HMI-1a3, PYR-1gP forms an intramolecular hydrogen bond, which both obstructs binding and reorients PYR-1gP in the membrane in a fashion that prevents it from correctly accessing the PKC C1 domain. Our results highlight the great value of molecular dynamics simulations as a key component for the drug design process of ligands targeting weakly membrane-associated proteins, where simulation in the relevant membrane environment is crucial for obtaining biologically applicable results.


Assuntos
Simulação de Dinâmica Molecular , Proteína Quinase C , Desenho de Fármacos , Ligantes , Fosforilação , Proteína Quinase C/metabolismo
5.
ACS Med Chem Lett ; 11(5): 671-677, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32435369

RESUMO

Targeting cytotoxic 4ß-phorbol esters toward cancer tissue was attempted by conjugating a 4ß-pborbol derivative with substrates for the proteases prostate-specific antigen (PSA) and prostate-specific membrane antigen (PSMA) expressed in cancer tissue. The hydrophilic peptide moiety was hypothesized to prevent penetration of the prodrugs into cells and prevent interaction with PKC. Cleavage of the peptide in cancer tumors was envisioned to release lipophilic cytotoxins, which subsequently penetrate into cancer cells. The 4ß-phorbol esters were prepared from 4ß-phorbol isolated from Croton tiglium seeds, while the peptides were prepared by solid-phase synthesis. Cellular assays revealed activation of PKC by the prodrugs and efficient killing of both peptidase positive as well as peptidase negative cells. Consequently no selectivity for enzyme expressing cells was found.

6.
Front Neurol Neurosci Res ; 1: 100004, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33479704

RESUMO

Parkinson's disease (PD) is an incurable neurodegenerative disorder affecting up to 10 million people in the world. Diagnostic motor symptoms of PD appear as a result of progressive degeneration and death of nigrostriatal dopamine neurons. Current PD treatments only relieve symptoms without halting the progression of the disease, and their use is complicated by severe adverse effects emerging as the disease progresses. Therefore, there is an urgent need for new therapies for PD management. We developed a small molecule compound, BT13, targeting receptor tyrosine kinase RET. RET is the signalling receptor for a known survival factor for dopamine neurons called glial cell line-derived neurotrophic factor (GDNF). Previously we showed that BT13 prevents the death of cultured dopamine neurons, stimulates dopamine release and activates pro-survival signalling cascades in naïve rodent brain. In the present study, we evaluate the effects of BT13 on motor imbalance and nigrostriatal dopamine neurons in a unilateral 6-hydroxydopamine rat model of PD. We show that BT13 alleviates motor dysfunction in experimental animals. Further studies are needed to make a conclusion whether BT13 can protect the integrity of the nigrostriatal dopamine system since even the positive control, GDNF protein, was unable to produce a clear neuroprotective effect in the model used in the present work. In contrast to GDNF, BT13 is able to cross the blood-brain barrier, which together with the ability to reduce motor symptoms of the disease makes it a valuable lead for further development as a potential disease-modifying agent to treat PD.

7.
Mov Disord ; 35(2): 245-255, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31840869

RESUMO

BACKGROUND: Motor symptoms of Parkinson's disease (PD) are caused by degeneration and progressive loss of nigrostriatal dopamine neurons. Currently, no cure for this disease is available. Existing drugs alleviate PD symptoms but fail to halt neurodegeneration. Glial cell line-derived neurotrophic factor (GDNF) is able to protect and repair dopamine neurons in vitro and in animal models of PD, but the clinical use of GDNF is complicated by its pharmacokinetic properties. The present study aimed to evaluate the neuronal effects of a blood-brain-barrier penetrating small molecule GDNF receptor Rearranged in Transfection agonist, BT13, in the dopamine system. METHODS: We characterized the ability of BT13 to activate RET in immortalized cells, to support the survival of cultured dopamine neurons, to protect cultured dopamine neurons against neurotoxin-induced cell death, to activate intracellular signaling pathways both in vitro and in vivo, and to regulate dopamine release in the mouse striatum as well as BT13's distribution in the brain. RESULTS: BT13 potently activates RET and downstream signaling cascades such as Extracellular Signal Regulated Kinase and AKT in immortalized cells. It supports the survival of cultured dopamine neurons from wild-type but not from RET-knockout mice. BT13 protects cultured dopamine neurons from 6-Hydroxydopamine (6-OHDA) and 1-methyl-4-phenylpyridinium (MPP+ )-induced cell death only if they express RET. In addition, BT13 is absorbed in the brain, activates intracellular signaling cascades in dopamine neurons both in vitro and in vivo, and also stimulates the release of dopamine in the mouse striatum. CONCLUSION: The GDNF receptor RET agonist BT13 demonstrates the potential for further development of novel disease-modifying treatments against PD. © 2019 International Parkinson and Movement Disorder Society.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Doença de Parkinson/metabolismo , Substância Negra/metabolismo , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Dopamina/metabolismo , Dopamina/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Camundongos , Oxidopamina/farmacologia , Doença de Parkinson Secundária/induzido quimicamente , Substância Negra/efeitos dos fármacos
8.
MethodsX ; 6: 2384-2395, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681539

RESUMO

In experimental deep brain stimulation of the subthalamic nucleus (STN HFS), stimulation currents just below the appearance threshold of stimulation-induced dyskinesias has often been used. The behavioral effect of STN HFS can be measured by the reversal of forelimb use asymmetry produced by hemiparkinsonism can be measured with the cylinder test among other tests. We used 18 Wistar rats with 6-hydroxydopamine induced hemiparkinsonism to test a customized scale to rate the severity of stimulation-induced dyskinesia; we then used these ratings to choose low and high stimulation currents. Subsequent cylinder tests showed that stimulation at the higher current, inducing mild and short-lived dyskinesias, was required for robust improvement in forelimb use, contradicting the use of currents below stimulation-induced dyskinesia threshold. It was also beneficial to separately count both all touches and first touches with the cylinder wall; this provided additional sensitivity and robustness to our results. •Scoring stimulation-induced dyskinesias can be used as a quantitative measure of dyskinesias and to choose stimulation currents.•Cylinder test scoring separately for both first and all touches can improve both sensitivity and reliability.•STN HFS at a current producing short-lived dyskinesias was required for robust improvement in forelimb use asymmetry.

9.
J Neurosci Res ; 97(3): 346-361, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30548446

RESUMO

Adeno-associated virus (AAV) vector-mediated delivery of human α-synuclein (α-syn) gene in rat substantia nigra (SN) results in increased expression of α-syn protein in the SN and striatum which can progressively degenerate dopaminergic neurons. Therefore, this model is thought to recapitulate the neurodegeneration in Parkinson's disease. Here, using AAV to deliver α-syn above the SN in male and female rats resulted in clear expression of human α-syn in the SN and striatum. The protein was associated with moderate behavioral deficits and some loss of tyrosine hydroxylase (TH) in the nigrostriatal areas. However, the immunohistochemistry results were highly variable and showed little to no correlation with behavior and the amount of α-syn present. Expression of green fluorescent protein (GFP) was used as a control to monitor gene delivery and expression efficacy. AAV-GFP resulted in a similar or greater TH loss compared to AAV-α-syn and therefore an additional vector that does not express a protein was tested. Vectors with double-floxed inverse open reading frame (DIO ORF) encoding fluorescent proteins that generate RNA that is not translated also resulted in TH downregulation in the SN but showed no significant behavioral deficits. These results demonstrate that although expression of wild-type human α-syn can cause neurodegeneration, the variability and lack of correlation with outcome measures are drawbacks with the model. Furthermore, design and control selection should be considered carefully because of conflicting conclusions due to AAV downregulation of TH, and we recommend caution with having highly regulated TH as the only marker for the dopamine system.


Assuntos
Substância Negra/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , alfa-Sinucleína/metabolismo , Animais , Dependovirus , Dopamina/metabolismo , Regulação para Baixo , Feminino , Humanos , Masculino , Modelos Animais , Doença de Parkinson/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Wistar
10.
Front Neurol ; 9: 457, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29973907

RESUMO

Glial cell line-derived neurotrophic factor (GDNF) is one of the most studied neurotrophic factors. GDNF has two splice isoforms, full-length pre-α-pro-GDNF (α-GDNF) and pre-ß-pro-GDNF (ß-GDNF), which has a 26 amino acid deletion in the pro-region. Thus far, studies have focused solely on the α-GDNF isoform, and nothing is known about the in vivo effects of the shorter ß-GDNF variant. Here we compare for the first time the effects of overexpressed α-GDNF and ß-GDNF in non-lesioned rat striatum and the partial 6-hydroxydopamine lesion model of Parkinson's disease. GDNF isoforms were overexpressed with their native pre-pro-sequences in the striatum using an adeno-associated virus (AAV) vector, and the effects on motor performance and dopaminergic phenotype of the nigrostriatal pathway were assessed. In the non-lesioned striatum, both isoforms increased the density of dopamine transporter-positive fibers at 3 weeks after viral vector delivery. Although both isoforms increased the activity of the animals in cylinder assay, only α-GDNF enhanced the use of contralateral paw. Four weeks later, the striatal tyrosine hydroxylase (TH)-immunoreactivity was decreased in both α-GDNF and ß-GDNF treated animals. In the neuroprotection assay, both GDNF splice isoforms increased the number of TH-immunoreactive cells in the substantia nigra but did not promote behavioral recovery based on amphetamine-induced rotation or cylinder assays. Thus, the shorter GDNF isoform, ß-GDNF, and the full-length α-isoform have comparable neuroprotective efficacy on dopamine neurons of the nigrostriatal circuitry.

11.
FEBS Open Bio ; 8(5): 817-828, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29744295

RESUMO

Prostate cancer is one of the most common cancers in men. Although it has a relatively high 5-year survival rate, development of resistance to standard androgen-deprivation therapy is a significant clinical problem. Therefore, novel therapeutic strategies are urgently needed. The protein kinase C (PKC) family is a putative prostate cancer drug target, but so far no PKC-targeting drugs are available for clinical use. By contrast to the standard approach of developing PKC inhibitors, we have developed isophthalate derivatives as PKC agonists. In this study, we have characterized the effects of the most potent isophthalate, 5-(hydroxymethyl)isophthalate 1a3 (HMI-1a3), on three prostate cancer cell lines (LNCaP, DU145, and PC3) using both 2D and 3D cell culture models. In 2D cell culture, HMI-1a3 reduced cell viability or proliferation in all cell lines as determined by the metabolic activity of the cells (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay) and thymidine incorporation. However, the mechanism of action in LNCaP cells was different to that in DU145 or PC3 cells. In LNCaP cells, HMI-1a3 induced a PKC-dependent activation of caspase 3/7, indicating an apoptotic response, whereas in DU145 and PC3 cells, it induced senescence, which was independent of PKC. This was observed as typical senescent morphology, increased ß-galactosidase activity, and upregulation of the senescence marker p21 and downregulation of E2F transcription factor 1. Using a multicellular spheroid model, we further showed that HMI-1a3 affects the growth of LNCaP and DU145 cells in a 3D culture, emphasizing its potential as a lead compound for cancer drug development.

12.
PLoS One ; 13(4): e0195668, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29641588

RESUMO

Protein kinase C (PKC) isoforms play a pivotal role in the regulation of numerous cellular functions, making them extensively studied and highly attractive drug targets. Utilizing the crystal structure of the PKCδ C1B domain, we have developed hydrophobic isophthalic acid derivatives that modify PKC functions by binding to the C1 domain of the enzyme. In the present study, we aimed to improve the drug-like properties of the isophthalic acid derivatives by increasing their solubility and enhancing the binding affinity. Here we describe the design and synthesis of a series of multisubstituted pyrimidines as analogs of C1 domain-targeted isophthalates and characterize their binding affinities to the PKCα isoform. In contrast to our computational predictions, the scaffold hopping from phenyl to pyrimidine core diminished the binding affinity. Although the novel pyrimidines did not establish improved binding affinity for PKCα compared to our previous isophthalic acid derivatives, the present results provide useful structure-activity relationship data for further development of ligands targeted to the C1 domain of PKC.


Assuntos
Ácidos Ftálicos/química , Proteína Quinase C/química , Proteína Quinase C/metabolismo , Pirimidinas/química , Pirimidinas/metabolismo , Desenho de Fármacos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Relação Estrutura-Atividade
13.
Mol Neurobiol ; 55(8): 6755-6768, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29349573

RESUMO

Neurotrophic factors (NTFs) hold potential as disease-modifying therapies for neurodegenerative disorders like Parkinson's disease. Glial cell line-derived neurotrophic factor (GDNF), cerebral dopamine neurotrophic factor (CDNF), and mesencephalic astrocyte-derived neurotrophic factor (MANF) have shown neuroprotective and restorative effects on nigral dopaminergic neurons in various animal models of Parkinson's disease. To date, however, their effects on brain neurochemistry have not been compared using in vivo microdialysis. We measured extracellular concentration of dopamine and activity of dopamine neurochemistry-regulating enzymes in the nigrostriatal system of rat brain. NTFs were unilaterally injected into the striatum of intact Wistar rats. Brain microdialysis experiments were performed 1 and 3 weeks later in freely-moving animals. One week after the treatment, we observed enhanced stimulus-evoked release of dopamine in the striatum of MANF-treated rats, but not in rats treated with GDNF or CDNF. MANF also increased dopamine turnover. Although GDNF did not affect the extracellular level of dopamine, we found significantly elevated tyrosine hydroxylase (TH) and catechol-O-methyltransferase (COMT) activity and decreased monoamine oxidase A (MAO-A) activity in striatal tissue samples 1 week after GDNF injection. The results show that GDNF, CDNF, and MANF have divergent effects on dopaminergic neurotransmission, as well as on dopamine synthetizing and metabolizing enzymes. Although the cellular mechanisms remain to be clarified, knowing the biological effects of exogenously administrated NTFs in intact brain is an important step towards developing novel neurotrophic treatments for degenerative brain diseases.


Assuntos
Dopamina/metabolismo , Movimento , Fatores de Crescimento Neural/farmacologia , Animais , Catecol O-Metiltransferase/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Humanos , Masculino , Metaboloma , Monoaminoxidase/metabolismo , Ratos , Ratos Wistar , Tirosina 3-Mono-Oxigenase/metabolismo
14.
Mol Ther ; 26(1): 238-255, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29050872

RESUMO

Cerebral ischemia activates endogenous reparative processes, such as increased proliferation of neural stem cells (NSCs) in the subventricular zone (SVZ) and migration of neural progenitor cells (NPCs) toward the ischemic area. However, this reparative process is limited because most of the NPCs die shortly after injury or are unable to arrive at the infarct boundary. In this study, we demonstrate for the first time that endogenous mesencephalic astrocyte-derived neurotrophic factor (MANF) protects NSCs against oxygen-glucose-deprivation-induced injury and has a crucial role in regulating NPC migration. In NSC cultures, MANF protein administration did not affect growth of cells but triggered neuronal and glial differentiation, followed by activation of STAT3. In SVZ explants, MANF overexpression facilitated cell migration and activated the STAT3 and ERK1/2 pathway. Using a rat model of cortical stroke, intracerebroventricular injections of MANF did not affect cell proliferation in the SVZ, but promoted migration of doublecortin (DCX)+ cells toward the corpus callosum and infarct boundary on day 14 post-stroke. Long-term infusion of MANF into the peri-infarct zone increased the recruitment of DCX+ cells in the infarct area. In conclusion, our data demonstrate a neuroregenerative activity of MANF that facilitates differentiation and migration of NPCs, thereby increasing recruitment of neuroblasts in stroke cortex.


Assuntos
Diferenciação Celular/genética , Fatores de Crescimento Neural/genética , Regeneração Nervosa/genética , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Acidente Vascular Cerebral/genética , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Morte Celular , Autorrenovação Celular/genética , Células Cultivadas , Modelos Animais de Doenças , Proteína Duplacortina , Imunofluorescência , Expressão Gênica , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Neuroglia/citologia , Neuroglia/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Fator de Transcrição STAT3/metabolismo , Estresse Fisiológico , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia
15.
eNeuro ; 4(1)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28303260

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder associated with a progressive loss of dopaminergic (DAergic) neurons of the substantia nigra (SN) and the accumulation of intracellular inclusions containing α-synuclein. Current therapies do not stop the progression of the disease, and the efficacy of these treatments wanes over time. Neurotrophic factors (NTFs) are naturally occurring proteins promoting the survival and differentiation of neurons and the maintenance of neuronal contacts. CDNF (cerebral dopamine NTF) and GDNF (glial cell line-derived NTF) are able to protect DAergic neurons against toxin-induced degeneration in experimental models of PD. Here, we report an additive neurorestorative effect of coadministration of CDNF and GDNF in the unilateral 6-hydroxydopamine (6-OHDA) lesion model of PD in rats. NTFs were given into the striatum four weeks after unilateral intrastriatal injection of 6-OHDA (20 µg). Amphetamine-induced (2.5 mg/kg, i.p.) rotational behavior was measured every two weeks. Number of tyrosine hydroxylase (TH)-positive cells from SN pars compacta (SNpc) and density of TH-positive fibers in the striatum were analyzed at 12 weeks after lesion. CDNF and GDNF alone restored the DAergic function, and one specific dose combination had an additive effect: CDNF (2.5µg) and GDNF (1µg) coadministration led to a stronger trophic effect relative to either of the single treatments alone. The additive effect may indicate different mechanism of action for the NTFs. Indeed, both NTFs activated the survival promoting PI3 kinase (PI3K)-Akt signaling pathway, but only CDNF decreased the expression level of tested endoplasmatic reticulum (ER) stress markers ATF6, glucose-regulated protein 78 (GRP78), and phosphorylation of eukaryotic initiation factor 2α subunit (eIF2α).


Assuntos
Antiparkinsonianos/administração & dosagem , Fator Neurotrófico Derivado de Linhagem de Célula Glial/administração & dosagem , Fatores de Crescimento Neural/administração & dosagem , Transtornos Parkinsonianos/tratamento farmacológico , Anfetamina/farmacologia , Animais , Células Cultivadas , Estimulantes do Sistema Nervoso Central/farmacologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Sinergismo Farmacológico , Quimioterapia Combinada , Chaperona BiP do Retículo Endoplasmático , Lateralidade Funcional , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Oxidopamina , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Parte Compacta da Substância Negra/efeitos dos fármacos , Parte Compacta da Substância Negra/metabolismo , Parte Compacta da Substância Negra/patologia , Ratos Wistar , Proteínas Recombinantes/administração & dosagem , Tirosina 3-Mono-Oxigenase/metabolismo
16.
Ann Neurol ; 81(2): 251-265, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28074534

RESUMO

OBJECTIVE: Rewiring of excitatory glutamatergic neuronal circuits is a major abnormality in epilepsy. Besides the rewiring of excitatory circuits, an abnormal depolarizing γ-aminobutyric acidergic (GABAergic) drive has been hypothesized to participate in the epileptogenic processes. However, a remaining clinically relevant question is whether early post-status epilepticus (SE) evoked chloride dysregulation is important for the remodeling of aberrant glutamatergic neuronal circuits. METHODS: Osmotic minipumps were used to infuse intracerebrally a specific inhibitor of depolarizing GABAergic transmission as well as a functionally blocking antibody toward the pan-neurotrophin receptor p75 (p75NTR ). The compounds were infused between 2 and 5 days after pilocarpine-induced SE. Immunohistochemistry for NKCC1, KCC2, and ectopic recurrent mossy fiber (rMF) sprouting as well as telemetric electroencephalographic and electrophysiological recordings were performed at day 5 and 2 months post-SE. RESULTS: Blockade of NKCC1 after SE with the specific inhibitor bumetanide restored NKCC1 and KCC2 expression, normalized chloride homeostasis, and significantly reduced the glutamatergic rMF sprouting within the dentate gyrus. This mechanism partially involves p75NTR signaling, as bumetanide application reduced SE-induced p75NTR expression and functional blockade of p75NTR decreased rMF sprouting. The early transient (3 days) post-SE infusion of bumetanide reduced rMF sprouting and recurrent seizures in the chronic epileptic phase. INTERPRETATION: Our findings show that early post-SE abnormal depolarizing GABA and p75NTR signaling fosters a long-lasting rearrangement of glutamatergic network that contributes to the epileptogenic process. This finding defines promising and novel targets to constrain reactive glutamatergic network rewiring in adult epilepsy. Ann Neurol 2017;81:251-265.


Assuntos
Bumetanida/farmacologia , Fibras Musgosas Hipocampais/efeitos dos fármacos , Receptores de Fator de Crescimento Neural/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Inibidores de Simportadores de Cloreto de Sódio e Potássio/farmacologia , Membro 2 da Família 12 de Carreador de Soluto/efeitos dos fármacos , Estado Epiléptico/metabolismo , Simportadores/efeitos dos fármacos , Ácido gama-Aminobutírico/efeitos dos fármacos , Animais , Bumetanida/administração & dosagem , Masculino , Proteínas do Tecido Nervoso , Ratos , Ratos Wistar , Receptores de Fatores de Crescimento , Inibidores de Simportadores de Cloreto de Sódio e Potássio/administração & dosagem , Estado Epiléptico/tratamento farmacológico , Estado Epiléptico/fisiopatologia , Cotransportadores de K e Cl-
17.
Basic Clin Pharmacol Toxicol ; 119(2): 149-60, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27001133

RESUMO

Alzheimer's disease (AD), the most common cause of dementia, is an irreversible and progressive neurodegenerative disorder. It affects predominantly brain areas that are critical for memory and learning and is characterized by two main pathological hallmarks: extracellular amyloid plaques and intracellular neurofibrillary tangles. Protein kinase C (PKC) has been classified as one of the cognitive kinases controlling memory and learning. By regulating several signalling pathways involved in amyloid and tau pathologies, it also plays an inhibitory role in AD pathophysiology. Among downstream targets of PKC are the embryonic lethal abnormal vision (ELAV)-like RNA-binding proteins that modulate the stability and the translation of specific target mRNAs involved in synaptic remodelling linked to cognitive processes. This MiniReview summarizes the current evidence on the role of PKC and ELAV-like proteins in learning and memory, highlighting how their derangement can contribute to AD pathophysiology. This last aspect emphasizes the potential of pharmacological activation of PKC as a promising therapeutic strategy for the treatment of AD.


Assuntos
Doença de Alzheimer/fisiopatologia , Proteínas ELAV/fisiologia , Proteína Quinase C/fisiologia , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Ativadores de Enzimas/farmacologia , Humanos , Aprendizagem , Memória , Transdução de Sinais
18.
Biochem Pharmacol ; 97(4): 542-549, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26231941

RESUMO

Methadone is a long-acting opioid agonist that is frequently prescribed as a treatment for opioid addiction. Almost all methadone maintenance patients are smokers, and there is a correlation between smoking habit and use of methadone. Methadone administration increases tobacco smoking, and heavy smokers use higher doses of methadone. Nevertheless, methadone maintenance patients are willing to quit smoking although their quit rates are low. Studies on nicotine-methadone interactions provide an example of the bedside-to-bench approach, i.e., observations in clinical settings have been studied experimentally in vivo and in vitro. In vivo studies have revealed the interplay between nicotine and the endogenous opioid system. At the receptor level, methadone has been shown to be an agonist of human α7 nAChRs and a non-competitive antagonist of human α4ß2 and α3* nAChRs. These drugs do not have significant interactions at the level of drug metabolism, and thus the interaction is most likely pharmacodynamic. The net effect of the interaction may depend on individual characteristics because pharmacogenetic factors influence the disposition of both methadone and nicotine.


Assuntos
Analgésicos Opioides/farmacologia , Metadona/farmacologia , Fumar , Humanos , Agonistas Nicotínicos/farmacologia , Abandono do Hábito de Fumar , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
19.
Basic Clin Pharmacol Toxicol ; 116(4): 321-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25196810

RESUMO

Nicotine-methadone interactions have been studied in human beings and in various experimental settings regarding addiction, reward and pain. Most methadone maintenance treatment patients are smokers, and methadone administration has been shown to increase cigarette smoking. Previous in vitro studies have shown that methadone is a non-competitive antagonist at rat α3ß4 nicotinic acetylcholine receptors (nAChR) and an agonist at human α7 nAChRs. In this study, we used cell lines expressing human α4ß2, α7 and α3* nAChRs to compare the interactions of methadone at the various human nAChRs under the same experimental conditions. A [(3) H]epibatidine displacement assay was used to determine whether methadone binds to the nicotinic receptors, and (86) Rb(+) efflux and changes in intracellular calcium [Ca(2+) ]i were used to assess changes in the functional activity of the receptors. Methadone displaced [(3) H]epibatidine from nicotinic agonist-binding sites in SH-EP1-hα7 and SH-SY5Y cells, but not in SH-EP1-hα4ß2 cells. The Ki values for methadone were 6.3 µM in SH-EP1-hα7 cells and 19.4 µM and 1008 µM in SH-SY5Y cells. Methadone increased [Ca(2+) ]i in all cell lines in a concentration-dependent manner, and in SH-EP1-hα7 cells, the effect was more pronounced than the effect of nicotine treatment. In SH-EP1-hα4ß2 cells, the effect of methadone was negligible compared to that of nicotine. Methadone pre-treatment abolished the nicotine-induced response in [Ca(2+) ]i in all cell lines expressing nAChRs. In SH-EP1-hα4ß2 and SH-SY5Y cells, methadone had no effect on the (86) Rb(+) efflux, but it antagonized the nicotine-induced (86) Rb(+) ion efflux in a non-competitive manner. These results suggest that methadone is an agonist at human α7 nAChRs and a non-competitive antagonist at human α4ß2 and α3* nAChRs. This study adds further support to the previous findings that opioids interact with nAChRs, which may underlie their frequent co-administration in human beings and might be of interest to the field of drug discovery.


Assuntos
Metadona/farmacologia , Entorpecentes/farmacologia , Antagonistas Nicotínicos/farmacologia , Receptores Nicotínicos/efeitos dos fármacos , Ligação Competitiva/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Cálcio/metabolismo , Células Cultivadas , Humanos , Agonistas Nicotínicos/metabolismo , Piridinas/metabolismo , Radioisótopos de Rubídio
20.
Biochem Soc Trans ; 42(6): 1543-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25399568

RESUMO

Protein kinase C (PKC) is a serine/threonine kinase belonging to the AGC family. PKC isoenzymes are activated by phospholipid-derived second messengers, transmit their signal by phosphorylating specific substrates and play a pivotal role in the regulation of various cell functions, including metabolism, growth, differentiation and apoptosis. Therefore they represent an interesting molecular target for the treatment of several diseases, such as cancer and Alzheimer's disease. Adopting a structure-based approach on the crystal structure of the PKCδ C1B domain, our team has developed isophthalic acid derivatives that are able to modify PKC functions by binding to the C1 domain of the enzyme. Bis[3-(trifluoromethyl)benzyl] 5-(hydroxymethyl)isophthalate (HMI-1a3) and bis(1-ethylpentyl) 5-(hydroxymethyl)isophthalate (HMI-1b11) were selected from a set of compounds for further studies due to their high affinity for the C1 domains of PKCα and PKCδ. HMI-1a3 showed marked antiproliferative activity in HeLa cells whereas HMI-1b11 induced differentiation and supported neurite growth in SH-SY5Y cells. Our aim in the future is to improve the selectivity and potency of isophthalate derivatives, to clarify their mechanism of action in the cellular environment and to assess their efficacy in cell-based and in vivo disease models. HMI-1a3 has already been selected for a further project and redesigned to function as a probe immobilized on an affinity chromatography column. It will be used to identify cellular target proteins from cell lysates, providing new insights into the mechanism of action of HMI-1a3.


Assuntos
Ácidos Ftálicos/farmacologia , Proteína Quinase C/efeitos dos fármacos , Linhagem Celular , Desenho de Fármacos , Humanos , Estrutura Molecular , Transdução de Sinais , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...