Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Gen Virol ; 104(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37862073

RESUMO

Chikungunya virus (CHIKV) is an alphavirus, transmitted by Aedes species mosquitoes. The CHIKV single-stranded positive-sense RNA genome contains two open reading frames, coding for the non-structural (nsP) and structural proteins of the virus. The non-structural polyprotein precursor is proteolytically cleaved to generate nsP1-4. Intriguingly, most isolates of CHIKV (and other alphaviruses) possess an opal stop codon close to the 3' end of the nsP3 coding sequence and translational readthrough is necessary to produce full-length nsP3 and the nsP4 RNA polymerase. Here we investigate the role of this stop codon by replacing the arginine codon with each of the three stop codons in the context of both a subgenomic replicon and infectious CHIKV. Both opal and amber stop codons were tolerated in mammalian cells, but the ochre was not. In mosquito cells all three stop codons were tolerated. Using SHAPE analysis we interrogated the structure of a putative stem loop 3' of the stop codon and used mutagenesis to probe the importance of a short base-paired region at the base of this structure. Our data reveal that this stem is not required for stop codon translational readthrough, and we conclude that other factors must facilitate this process to permit productive CHIKV replication.


Assuntos
Aedes , Febre de Chikungunya , Vírus Chikungunya , Animais , Vírus Chikungunya/genética , Códon de Terminação/genética , Códon de Terminação/metabolismo , Febre de Chikungunya/genética , Proteínas não Estruturais Virais/genética , Replicação Viral/genética , Mamíferos/genética , Mamíferos/metabolismo
2.
Antiviral Res ; 211: 105523, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36603772

RESUMO

Chikungunya virus (CHIKV) is a pathogenic arbovirus spread by Aedes spp. mosquitos. CHIKV has a wide global prevalence and represents a significant health burden in affected populations. Symptoms of CHIKV infection include fever, rashes and debilitating joint and muscle pain, which can persist for several months to years in some patients. To date, there remains no vaccine or specific antiviral therapy against this important human pathogen. Based on our previously published structural and phenotypic analysis of the 5' region of the CHIKV genome, we designed a panel of locked nucleic acid oligonucleotides to bind structured RNA replication elements within the virus genome, which are essential for efficient CHIKV replication. Using electromobility shift assays, we confirmed the relative binding efficiencies of each LNA to target CHIKV genomic RNA. We then went on to demonstrate, using both sub-genomic replicon and infectious virus systems, that targeting individual RNA replication elements inhibits CHIKV genome replication and production of infectious virus. Time course assays demonstrated that LNAs can access the CHIKV replication complex and virus genome, during active virus replication. For the first time, these findings show that functional RNA elements can be specifically targeted during the CHIKV lifecycle and consequently represent potential novel antiviral targets.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Animais , Humanos , Vírus Chikungunya/genética , Genoma Viral , RNA Viral/genética , Replicação Viral/genética , RNA Subgenômico/genética
3.
ACS Nano ; 16(12): 20075-20085, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36279181

RESUMO

Nanopore systems have emerged as a leading platform for the analysis of biomolecular complexes with single-molecule resolution. The conformation of biomolecules, such as RNA, is highly dependent on the electrolyte composition, but solid-state nanopore systems often require high salt concentration to operate, precluding analysis of macromolecular conformations under physiologically relevant conditions. Here, we report the implementation of a polymer-electrolyte solid-state nanopore system based on alkali metal halide salts dissolved in 50% w/v poly(ethylene) glycol (PEG) to augment the performance of our system. We show that polymer-electrolyte bath governs the translocation dynamics of the analyte which correlates with the physical properties of the salt used in the bath. This allowed us to identify CsBr as the optimal salt to complement PEG to generate the largest signal enhancement. Harnessing the effects of the polymer-electrolyte, we probed the conformations of the Chikungunya virus (CHIKV) RNA genome fragments under physiologically relevant conditions. Our system was able to fingerprint CHIKV RNA fragments ranging from ∼300 to ∼2000 nt length and subsequently distinguish conformations between the co-transcriptionally folded and the natively refolded ∼2000 nt CHIKV RNA. We envision that the polymer-electrolyte solid-state nanopore system will further enable structural and conformational analyses of individual biomolecules under physiologically relevant conditions.


Assuntos
Nanoporos , Polímeros/química , Polietilenoglicóis/química , Eletrólitos/química , Conformação de Ácido Nucleico
4.
RNA ; 28(10): 1359-1376, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35918125

RESUMO

Genome replication of positive strand RNA viruses requires the production of a complementary negative strand RNA that serves as a template for synthesis of more positive strand progeny. Structural RNA elements are important for genome replication, but while they are readily observed in the positive strand, evidence of their existence in the negative strand is more limited. We hypothesized that this was due to viruses differing in their capacity to allow this latter RNA to adopt structural folds. To investigate this, ribozymes were introduced into the negative strand of different viral constructs; the expectation being that if RNA folding occurred, negative strand cleavage and suppression of replication would be seen. Indeed, this was what happened with hepatitis C virus (HCV) and feline calicivirus (FCV) constructs. However, little or no impact was observed for chikungunya virus (CHIKV), human rhinovirus (HRV), hepatitis E virus (HEV), and yellow fever virus (YFV) constructs. Reduced cleavage in the negative strand proved to be due to duplex formation with the positive strand. Interestingly, ribozyme-containing RNAs also remained intact when produced in vitro by the HCV polymerase, again due to duplex formation. Overall, our results show that there are important differences in the conformational constraints imposed on the folding of the negative strand between different positive strand RNA viruses.


Assuntos
Hepatite C , RNA Catalítico , Hepacivirus/genética , Humanos , Vírus de RNA de Cadeia Positiva , RNA Catalítico/genética , RNA Viral/genética , Replicação Viral/genética
5.
Nat Commun ; 13(1): 1279, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35277507

RESUMO

Subgenomic flaviviral RNAs (sfRNAs) are virus-derived noncoding RNAs produced by pathogenic mosquito-borne flaviviruses (MBF) to counteract the host antiviral response. To date, the ability of non-pathogenic flaviviruses to produce and utilise sfRNAs remains largely unexplored, and it is unclear what role XRN1 resistance plays in flavivirus evolution and host adaptation. Herein the production of sfRNAs by several insect-specific flaviviruses (ISFs) that replicate exclusively in mosquitoes is shown, and the secondary structures of their complete 3'UTRs are determined. The xrRNAs responsible for the biogenesis of ISF sfRNAs are also identified, and the role of these sfRNAs in virus replication is demonstrated. We demonstrate that 3'UTRs of all classical ISFs, except Anopheles spp-asscoaited viruses, and of the dual-host associated ISF Binjari virus contain duplicated xrRNAs. We also reveal novel structural elements in the 3'UTRs of dual host-associated and Anopheles-associated classical ISFs. Structure-based phylogenetic analysis demonstrates that xrRNAs identified in Anopheles spp-associated ISF are likely ancestral to xrRNAs of ISFs and MBFs. In addition, our data provide evidence that duplicated xrRNAs are selected in the evolution of flaviviruses to provide functional redundancy, which preserves the production of sfRNAs if one of the structures is disabled by mutations or misfolding.


Assuntos
Culicidae , Flavivirus , Regiões 3' não Traduzidas/genética , Animais , Flavivirus/genética , Genoma Viral , Filogenia , RNA Viral/química , RNA Viral/genética
6.
PLoS Pathog ; 16(9): e1008825, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32886709

RESUMO

Most alphaviruses (family Togaviridae) including Sindbis virus (SINV) and other human pathogens, are transmitted by arthropods. The first open reading frame in their positive strand RNA genome encodes for the non-structural polyprotein, a precursor to four separate subunits of the replicase. The replicase interacts with cis-acting elements located near the intergenic region and at the ends of the viral RNA genome. A trans-replication assay was developed and used to analyse the template requirements for nine alphavirus replicases. Replicases of alphaviruses of the Semliki Forest virus complex were able to cross-utilize each other's templates as well as those of outgroup alphaviruses. Templates of outgroup alphaviruses, including SINV and the mosquito-specific Eilat virus, were promiscuous; in contrast, their replicases displayed a limited capacity to use heterologous templates, especially in mosquito cells. The determinants important for efficient replication of template RNA were mapped to the 5' region of the genome. For SINV these include the extreme 5'- end of the genome and sequences corresponding to the first stem-loop structure in the 5' untranslated region. Mutations introduced in these elements drastically reduced infectivity of recombinant SINV genomes. The trans-replicase tools and approaches developed here can be instrumental in studying alphavirus recombination and evolution, but can also be applied to study other viruses such as picornaviruses, flaviviruses and coronaviruses.


Assuntos
Alphavirus , Genoma Viral , Conformação de Ácido Nucleico , RNA Viral , RNA Polimerase Dependente de RNA , Proteínas Virais , Alphavirus/química , Alphavirus/genética , Alphavirus/metabolismo , Linhagem Celular Tumoral , Células HEK293 , Humanos , RNA Viral/química , RNA Viral/genética , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
7.
Antiviral Res ; 182: 104876, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32783901

RESUMO

The recurrent public health threat imposed by Zika Virus (ZIKV) in various geographical areas necessitates the immediate development of antiviral compounds or vaccines. Flaviviral Envelope (E) proteins are essential for host-cell recognition and virion entry. Consequently, they represent an important target for antiviral therapy, with the aim of preventing viral spread during early stages of infection. Due to conformational rearrangement during entry, flavivirus E proteins present several alternative conformations as potential antiviral targets - for blocking entry or virus-host membrane fusion. We previously identified a conserved hydrophobic region, between DI/DIII of ZIKV E protein, with potential to act as an antiviral target. Here, we screened commercially available antiviral compound libraries against ZIKV E protein, using a structure-based drug discovery approach. The antiviral efficacy of the top ten screened compounds were experimentally validated for inhibition of ZIKV replication in Vero Cells. Compound F1065-0358 was observed to inhibit ZIKV replication with an IC50 of 14.0 µM. Ligand-protein complex molecular dynamic simulations confirmed the stability of ligand binding up to 100 ns. Together, results from this study indicate that F1065-0358 functions as a ZIKV virus inhibitor by interfering E protein conformational rearrangement. Furthermore, given that F1065-0358 interacts with highly conserved residues of E protein, this raises the potential for its efficacy against other pathogenic flaviviruses.


Assuntos
Antivirais/farmacologia , Bibliotecas de Moléculas Pequenas/metabolismo , Proteínas do Envelope Viral/antagonistas & inibidores , Internalização do Vírus/efeitos dos fármacos , Zika virus/fisiologia , Animais , Antivirais/metabolismo , Chlorocebus aethiops , Descoberta de Drogas , Humanos , Células Vero , Proteínas do Envelope Viral/metabolismo , Replicação Viral/genética , Replicação Viral/imunologia , Zika virus/efeitos dos fármacos
8.
Mol Biol Rep ; 47(4): 3097-3115, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32128708

RESUMO

Zika virus is a mosquito-borne Flavivirus originally isolated from humans in 1952. Following its re-emergence in Brazil in 2015, an increase in the number of babies born with microcephaly to infected mothers was observed. Microcephaly is a neurodevelopmental disorder, characterised phenotypically by a smaller than average head size, and is usually developed in utero. The 2015 outbreak in the Americas led to the World Health Organisation declaring Zika a Public Health Emergency of International Concern. Since then, much research into the effects of Zika has been carried out. Studies have investigated the structure of the virus, its effects on and evasion of the immune response, cellular entry including target receptors, its transmission from infected mother to foetus and its cellular targets. This review discusses current knowledge and novel research into these areas, in hope of developing a further understanding of how exposure of pregnant women to the Zika virus can lead to impaired brain development of their foetus. Although no longer considered an epidemic in the Americas, the mechanism by which Zika acts is still not comprehensively and wholly understood, and this understanding will be crucial in developing effective vaccines and treatments.


Assuntos
Infecção por Zika virus/fisiopatologia , Infecção por Zika virus/transmissão , Zika virus/metabolismo , Encéfalo/embriologia , Encéfalo/virologia , Brasil/epidemiologia , Surtos de Doenças , Feminino , Humanos , Lactente , Microcefalia/epidemiologia , Microcefalia/virologia , Gravidez , Saúde Pública , Zika virus/patogenicidade , Infecção por Zika virus/epidemiologia
9.
Sci Transl Med ; 12(527)2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31969486

RESUMO

Arthropod-borne viruses (arboviruses) are important human pathogens for which there are no specific antiviral medicines. The abundance of genetically distinct arbovirus species, coupled with the unpredictable nature of their outbreaks, has made the development of virus-specific treatments challenging. Instead, we have defined and targeted a key aspect of the host innate immune response to virus at the arthropod bite that is common to all arbovirus infections, potentially circumventing the need for virus-specific therapies. Using mouse models and human skin explants, we identify innate immune responses by dermal macrophages in the skin as a key determinant of disease severity. Post-exposure treatment of the inoculation site by a topical TLR7 agonist suppressed both the local and subsequent systemic course of infection with a variety of arboviruses from the Alphavirus, Flavivirus, and Orthobunyavirus genera. Clinical outcome was improved in mice after infection with a model alphavirus. In the absence of treatment, antiviral interferon expression to virus in the skin was restricted to dermal dendritic cells. In contrast, stimulating the more populous skin-resident macrophages with a TLR7 agonist elicited protective responses in key cellular targets of virus that otherwise proficiently replicated virus. By defining and targeting a key aspect of the innate immune response to virus at the mosquito bite site, we have identified a putative new strategy for limiting disease after infection with a variety of genetically distinct arboviruses.


Assuntos
Infecções por Arbovirus/imunologia , Infecções por Arbovirus/metabolismo , Arbovírus/imunologia , Arbovírus/patogenicidade , Macrófagos/metabolismo , Pele/citologia , Alphavirus/imunologia , Alphavirus/patogenicidade , Animais , Flavivirus/imunologia , Flavivirus/patogenicidade , Humanos , Glicoproteínas de Membrana/metabolismo , Camundongos , Orthobunyavirus/imunologia , Orthobunyavirus/patogenicidade , Receptor 7 Toll-Like/metabolismo
10.
PLoS Negl Trop Dis ; 13(9): e0007703, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31483794

RESUMO

Chikungunya virus (CHIKV) is a re-emerging, pathogenic alphavirus that is transmitted to humans by Aedes spp. mosquitoes-causing fever and debilitating joint pain, with frequent long-term health implications and high morbidity. The CHIKV lifecycle is poorly understood and specific antiviral therapeutics or vaccines are lacking. In this study, we investigated the role of host-cell chloride (Cl-) channels on CHIKV replication.We demonstrate that specific pharmacological Cl- channel inhibitors significantly inhibit CHIKV replication in a dose-dependent manner, suggesting that Cl-channels are pro-viral factors in human cells. Further analysis of the effect of the inhibitors on CHIKV attachment, entry, viral protein expression and replicon replication demonstrated that Cl- channels are specifically required for efficient CHIKV genome replication. This was conserved in mosquito cells, where CHIKV replication and genome copy number was significantly reduced following Cl- channel inhibition. siRNA silencing identified chloride intracellular channels 1 and 4 (CLIC1 and CLIC4, respectively) as required for efficient CHIKV replication and protein affinity chromatography showed low levels of CLIC1 in complex with CHIKV nsP3, an essential component of the viral replication machinery. In summary, for the first time we demonstrate that efficient replication of the CHIKV genome depends on cellular Cl- channels, in both human and mosquito cells and identifies CLIC1 and CLIC4 as agonists of CHIKV replication in human cells. We observe a modest interaction, either direct or indirect, between CLIC1 and nsP3 and hypothesize that CLIC1 may play a role in the formation/maintenance of CHIKV replication complexes. These findings advance our molecular understanding of CHIKV replication and identify potential druggable targets for the treatment and prevention of CHIKV mediated disease.


Assuntos
Febre de Chikungunya/metabolismo , Vírus Chikungunya/fisiologia , Canais de Cloreto/metabolismo , Genoma Viral , Replicação Viral , Aedes/genética , Aedes/metabolismo , Aedes/virologia , Animais , Febre de Chikungunya/genética , Febre de Chikungunya/virologia , Vírus Chikungunya/genética , Canais de Cloreto/genética , Interações Hospedeiro-Parasita , Humanos , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
11.
J Gen Virol ; 100(11): 1501-1514, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31490115

RESUMO

Equine hepacivirus (EHcV) (now also classified as hepacivirus A) is the closest genetic relative to hepatitis C virus (HCV) and is proposed to have diverged from HCV within the last 1000 years. The 5' untranslated regions (UTRs) of both HCV and EHcV exhibit internal ribosome entry site (IRES) activity, allowing cap-independent translational initiation, yet only the HCV 5'UTR has been systematically analysed. Here, we report a detailed structural and functional analysis of the EHcV 5'UTR. The secondary structure was determined using selective 2' hydroxyl acylation analysed by primer extension (SHAPE), revealing four stem-loops, termed SLI, SLIA, SLII and SLIII, by analogy to HCV. This guided a mutational analysis of the EHcV 5'UTR, allowing us to investigate the roles of the stem-loops in IRES function. This approach revealed that SLI was not required for EHcV IRES-mediated translation. Conversely, SLIII was essential, specifically SLIIIb, SLIIId and a GGG motif that is conserved across the Hepaciviridae. Further SHAPE analysis provided evidence that this GGG motif mediated interaction with the 40S ribosomal subunit, whilst a CUU sequence in the apical loop of SLIIIb mediated an interaction with eIF3. In addition, we showed that a microRNA122 target sequence located between SLIA and SLII mediated an enhancement of translation in the context of a subgenomic replicon. Taken together, these results highlight the conservation of hepaciviral translation mechanisms, despite divergent primary sequences.


Assuntos
Regiões 5' não Traduzidas , Hepacivirus/genética , Sítios Internos de Entrada Ribossomal , Animais , Linhagem Celular , Análise Mutacional de DNA , Equidae/virologia , Hepacivirus/crescimento & desenvolvimento , Humanos , Conformação de Ácido Nucleico , Biossíntese de Proteínas , RNA de Cadeia Dupla/genética , RNA Viral/genética , Genética Reversa
12.
Nucleic Acids Res ; 47(17): 9296-9312, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31350895

RESUMO

Chikungunya virus (CHIKV) is a re-emerging, pathogenic Alphavirus transmitted to humans by Aedes spp. mosquitoes. We have mapped the RNA structure of the 5' region of the CHIKV genome using selective 2'-hydroxyl acylation analysed by primer extension (SHAPE) to investigate intramolecular base-pairing at single-nucleotide resolution. Taking a structure-led reverse genetic approach, in both infectious virus and sub-genomic replicon systems, we identified six RNA replication elements essential to efficient CHIKV genome replication - including novel elements, either not previously analysed in other alphaviruses or specific to CHIKV. Importantly, through a reverse genetic approach we demonstrate that the replication elements function within the positive-strand genomic copy of the virus genome, in predominantly structure-dependent mechanisms during efficient replication of the CHIKV genome. Comparative analysis in human and mosquito-derived cell lines reveal that a novel element within the 5'UTR is essential for efficient replication in both host systems, while those in the adjacent nsP1 encoding region are specific to either vertebrate or invertebrate host cells. In addition to furthering our knowledge of fundamental aspects of the molecular virology of this important human pathogen, we foresee that results from this study will be important for rational design of a genetically stable attenuated vaccine.


Assuntos
Febre de Chikungunya/genética , Vírus Chikungunya/genética , Proteínas não Estruturais Virais/genética , Replicação Viral/genética , Aedes/virologia , Animais , Febre de Chikungunya/virologia , Vírus Chikungunya/patogenicidade , Genoma Viral/genética , Humanos , RNA Viral/genética , Replicon/genética
13.
PLoS Pathog ; 15(1): e1007239, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30668592

RESUMO

Chikungunya virus (CHIKV) is a re-emerging Alphavirus causing fever, joint pain, skin rash, arthralgia, and occasionally death. Antiviral therapies and/or effective vaccines are urgently required. CHIKV biology is poorly understood, in particular the functions of the non-structural protein 3 (nsP3). Here we present the results of a mutagenic analysis of the alphavirus unique domain (AUD) of nsP3. Informed by the structure of the Sindbis virus AUD and an alignment of amino acid sequences of multiple alphaviruses, a series of mutations in the AUD were generated in a CHIKV sub-genomic replicon. This analysis revealed an essential role for the AUD in CHIKV RNA replication, with mutants exhibiting species- and cell-type specific phenotypes. To test if the AUD played a role in other stages of the virus lifecycle, the mutants were analysed in the context of infectious CHIKV. This analysis indicated that the AUD was also required for virus assembly. In particular, one mutant (P247A/V248A) exhibited a dramatic reduction in production of infectious virus. This phenotype was shown to be due to a block in transcription of the subgenomic RNA leading to reduced synthesis of the structural proteins and a concomitant reduction in virus production. This phenotype could be further explained by both a reduction in the binding of the P247A/V248A mutant nsP3 to viral genomic RNA in vivo, and the reduced affinity of the mutant AUD for the subgenomic promoter RNA in vitro. We propose that the AUD is a pleiotropic protein domain, with multiple functions during CHIKV RNA synthesis.


Assuntos
Vírus Chikungunya/genética , Proteínas não Estruturais Virais/metabolismo , Alphavirus/genética , Alphavirus/metabolismo , Febre de Chikungunya/genética , Febre de Chikungunya/metabolismo , Vírus Chikungunya/metabolismo , Genoma Viral , Mutação/genética , Polimorfismo de Nucleotídeo Único/genética , Domínios Proteicos , Replicon , Proteínas não Estruturais Virais/fisiologia , Replicação Viral/genética , Replicação Viral/fisiologia , Vírus/genética
14.
PeerJ ; 6: e5870, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30416884

RESUMO

The hepatitis C virus RNA genome possesses a variety of conserved structural elements, in both coding and non-coding regions, that are important for viral replication. These elements are known or predicted to modulate key life cycle events, such as translation and genome replication, some involving conformational changes induced by long-range RNA-RNA interactions. One such element is SLVI, a stem-loop (SL) structure located towards the 5' end of the core protein-coding region. This element forms an alternative RNA-RNA interaction with complementary sequences in the 5' untranslated regions that are independently involved in the binding of the cellular microRNA 122 (miR122). The switch between 'open' and 'closed' structures involving SLVI has previously been proposed to modulate translation, with lower translation efficiency associated with the 'closed' conformation. In the current study, we have used selective 2'-hydroxyl acylation analysed by primer extension to validate this RNA-RNA interaction in the absence and presence of miR122. We show that the long-range association (LRA) only forms in the absence of miR122, or otherwise requires the blocking of miR122 binding combined with substantial disruption of SLVI. Using site-directed mutations introduced to promote open or closed conformations of the LRA we demonstrate no correlation between the conformation and the translation phenotype. In addition, we observed no influence on virus replication compared to unmodified genomes. The presence of SLVI is well-documented to suppress translation, but these studies demonstrate that this is not due to its contribution to the LRA. We conclude that, although there are roles for SLVI in translation, the LRA is not a riboswitch regulating the translation and replication phenotypes of the virus.

15.
PLoS One ; 11(6): e0158105, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27341437

RESUMO

Over 50 million humans live in areas of potential exposure to tick-borne encephalitis virus (TBEV). The disease exhibits an estimated 16,000 cases recorded annually over 30 European and Asian countries. Conventionally, TBEV transmission to Ixodes spp. ticks occurs whilst feeding on viraemic animals. However, an alternative mechanism of non-viraemic transmission (NVT) between infected and uninfected ticks co-feeding on the same transmission-competent host, has also been demonstrated. Here, using laboratory-bred I. ricinus ticks, we demonstrate low and high efficiency NVT for TBEV strains Vasilchenko (Vs) and Hypr, respectively. These virus strains share high sequence similarity but are classified as two TBEV subtypes. The Vs strain is a Siberian subtype, naturally associated with I. persulcatus ticks whilst the Hypr strain is a European subtype, transmitted by I. ricinus ticks. In mammalian cell culture (porcine kidney cell line PS), Vs and Hypr induce low and high cytopathic effects (cpe), respectively. Using reverse genetics, we engineered a range of viable Vs/Hypr chimaeric strains, with substituted genes. No significant differences in replication rate were detected between wild-type and chimaeric viruses in cell culture. However, the chimaeric strain Vs[Hypr str] (Hypr structural and Vs non-structural genomic regions) demonstrated high efficiency NVT in I. ricinus whereas the counterpart Hypr[Vs str] was not transmitted by NVT, indicating that the virion structural proteins largely determine TBEV NVT transmission efficiency between ticks. In contrast, in cell culture, the extent of cpe was largely determined by the non-structural region of the TBEV genome. Chimaeras with Hypr non-structural genes were more cytotoxic for PS cells when compared with Vs genome-based chimaeras.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos/fisiologia , Encefalite Transmitida por Carrapatos/transmissão , Encefalite Transmitida por Carrapatos/virologia , Proteínas não Estruturais Virais/genética , Proteínas Estruturais Virais/genética , Animais , Produtos Biológicos , Linhagem Celular , Células Cultivadas , Efeito Citopatogênico Viral , Modelos Animais de Doenças , Encefalite Transmitida por Carrapatos/mortalidade , Ixodes/virologia , Camundongos , Recombinação Genética , Suínos , Proteínas não Estruturais Virais/metabolismo , Proteínas Estruturais Virais/metabolismo , Replicação Viral
16.
Nucleic Acids Res ; 43(5): 2914-26, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25712095

RESUMO

A phylogenetically conserved RNA structure within the NS5B coding region of hepatitis C virus functions as a cis-replicating element (CRE). Integrity of this CRE, designated SL9266 (alternatively 5BSL3.2), is critical for genome replication. SL9266 forms the core of an extended pseudoknot, designated SL9266/PK, involving long distance RNA-RNA interactions between unpaired loops of SL9266 and distal regions of the genome. Previous studies demonstrated that SL9266/PK is dynamic, with 'open' and 'closed' conformations predicted to have distinct functions during virus replication. Using a combination of site-directed mutagenesis and locked nucleic acids (LNA) complementary to defined domains of SL9266 and its interacting regions, we have explored the influence of this structure on genome translation and replication. We demonstrate that LNAs which block formation of the closed conformation inhibit genome translation. Inhibition was at least partly independent of the initiation mechanism, whether driven by homologous or heterologous internal ribosome entry sites or from a capped message. Provision of SL9266/PK in trans relieved translational inhibition, and mutational analysis implied a mechanism in which the closed conformation recruits a cellular factor that would otherwise suppresses translation. We propose that SL9266/PK functions as a temporal switch, modulating the mutually incompatible processes of translation and replication.


Assuntos
Regiões 3' não Traduzidas/genética , Hepacivirus/genética , Biossíntese de Proteínas , RNA Viral/genética , Sequências Reguladoras de Ácido Nucleico/genética , Replicação Viral/genética , Linhagem Celular Tumoral , Hepacivirus/metabolismo , Humanos , Mutação , Conformação de Ácido Nucleico , Oligonucleotídeos Antissenso/genética , RNA Viral/química , RNA Viral/metabolismo , Transcrição Gênica , Proteínas não Estruturais Virais/genética
17.
J Gen Virol ; 96(Pt 7): 1497-503, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25626680

RESUMO

Positive-stranded RNA viruses include important human, animal and plant pathogens. Their genomes are able to fold into complex structures stabilized by base pairing between individual nucleotides, many of which are highly conserved and have essential functions during virus replication. With new studies and technological advances the diversity of roles, mechanisms and interactions in which such structured viral RNA functions is becoming increasingly clear. It is also evident that many RNA structures do not function as discrete elements but through mechanisms involving multiple, long-range and often dynamic RNARNA interactions. Through a range of examples and recent advances, this review illustrates the diverse roles and mechanisms of structured viral RNA during the replication of positive-stranded RNA viruses infecting humans and animals.


Assuntos
Conformação de Ácido Nucleico , Vírus de RNA/fisiologia , RNA Viral/genética , RNA Viral/metabolismo , Replicação Viral , Animais , Pareamento de Bases , Regulação Viral da Expressão Gênica , Humanos , Plantas , RNA Viral/química
18.
Nucleic Acids Res ; 40(14): 6908-21, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22561372

RESUMO

The RNA structure and long-range interactions of the SL9266 cis-acting replication element located within the NS5B coding region of hepatitis C virus (HCV) were determined using selective 2'-hydroxyl acylation analysed by primer extension. Marked differences were found in the long-range interactions of SL9266 when the two widely used genotype 2a JFH-1 (HCVcc) and genotype 1b Con1b sub-genomic replicon systems were compared. In both genomes, there was evidence for interaction of the sub-terminal bulge loop of SL9266 and sequences around nucleotide 9110, though the replication phenotype of genomes bearing mutations that disrupted this interaction was fundamentally different. In contrast, a 'kissing loop' interaction between the terminal loop of SL9266 and sequences in the 3'-untranslated X-tail was only detectable in JFH-1-based genomes. In the latter, where both long-range interactions are present, they were independent, implying that SL9266 forms the core of an extended pseudoknot. The presence of the 'kissing loop' interaction inhibited the formation of SL9571 in the 3'-X-tail, an RNA structure implicated in genome replication. We propose that, SL9266 may contribute a switch function that modulates the mutually incompatible translation and replication events that must occur for replication of the positive-strand RNA genome of HCV.


Assuntos
Hepacivirus/genética , RNA Viral/química , Replicação Viral , Linhagem Celular Tumoral , Hepacivirus/fisiologia , Humanos , Mutação , Conformação de Ácido Nucleico , Fenótipo
19.
J Virol ; 82(18): 9008-22, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18614633

RESUMO

The genome of hepatitis C virus (HCV) contains cis-acting replication elements (CREs) comprised of RNA stem-loop structures located in both the 5' and 3' noncoding regions (5' and 3' NCRs) and in the NS5B coding sequence. Through the application of several algorithmically independent bioinformatic methods to detect phylogenetically conserved, thermodynamically favored RNA secondary structures, we demonstrate a long-range interaction between sequences in the previously described CRE (5BSL3.2, now SL9266) with a previously predicted unpaired sequence located 3' to SL9033, approximately 200 nucleotides upstream. Extensive reverse genetic analysis both supports this prediction and demonstrates a functional requirement in genome replication. By mutagenesis of the Con-1 replicon, we show that disruption of this alternative pairing inhibited replication, a phenotype that could be restored to wild-type levels through the introduction of compensating mutations in the upstream region. Substitution of the CRE with the analogous region of different genotypes of HCV produced replicons with phenotypes consistent with the hypothesis that both local and long-range interactions are critical for a fundamental aspect of genome replication. This report further extends the known interactions of the SL9266 CRE, which has also been shown to form a "kissing loop" interaction with the 3' NCR (P. Friebe, J. Boudet, J. P. Simorre, and R. Bartenschlager, J. Virol. 79:380-392, 2005), and suggests that cooperative long-range binding with both 5' and 3' sequences stabilizes the CRE at the core of a complex pseudoknot. Alternatively, if the long-range interactions were mutually exclusive, the SL9266 CRE may function as a molecular switch controlling a critical aspect of HCV genome replication.


Assuntos
Elementos Facilitadores Genéticos/genética , Hepacivirus/genética , RNA Viral/metabolismo , Proteínas não Estruturais Virais , Regiões 3' não Traduzidas/química , Regiões 3' não Traduzidas/genética , Regiões 3' não Traduzidas/metabolismo , Regiões 5' não Traduzidas/química , Regiões 5' não Traduzidas/genética , Regiões 5' não Traduzidas/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , Biologia Computacional , Hepacivirus/metabolismo , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , Plasmídeos , RNA Viral/química , RNA Viral/genética , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
20.
RNA ; 10(9): 1337-51, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15273323

RESUMO

Discrete RNA secondary and higher-order structures, typically local in extent, play a fundamental role in RNA virus replication. Using new bioinformatics analysis methods, we have identified genome-scale ordered RNA structure (GORS) in many genera and families of positive-strand animal and plant RNA viruses. There was remarkably variability between genera that possess this characteristic; for example, hepaciviruses in the family Flaviviridae show evidence for extensive internal base-pairing throughout their coding sequences that was absent in both the related pestivirus and flavivirus genera. Similar genus-associated variability was observed in the Picornaviridae, the Caliciviridae, and many plant virus families. The similarity in replication strategies between genera in each of these families rules out a role for GORS in a fundamentally conserved aspect of this aspect of the virus life cycle. However, in the Picornaviridae, Flaviviridae, and Caliciviridae, the existence of GORS correlated strongly with the ability of each genus to persist in their natural hosts. This raises the intriguing possibility of a role for GORS in the modulation of innate intracellular defense mechanisms (and secondarily, the acquired immune system) triggered by double-stranded RNA, analogous in function to the expression of structured RNA transcripts by large DNA viruses. Irrespective of function, the observed evolutionary conservation of GORS in many viruses imposes a considerable constraint on genome plasticity and the consequent narrowing of sequence space in which neutral drift can occur. These findings potentially reconcile the rapid evolution of RNA viruses over short periods with the documented examples of extreme conservatism evident from their intimate coevolution with their hosts.


Assuntos
Evolução Biológica , Genoma Viral , Vírus de RNA/genética , RNA Viral/química , Replicação Viral , Animais , Biologia Computacional , Sequência Conservada , Vírus de DNA/genética , Vírus de DNA/crescimento & desenvolvimento , Humanos , Sistema Imunitário , Mamíferos/genética , Conformação de Ácido Nucleico , Vírus de Plantas/genética , Vírus de Plantas/crescimento & desenvolvimento , Vírus de RNA/crescimento & desenvolvimento , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...