Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(24)2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38140511

RESUMO

Cotton (Gossypium spp.) is the most important natural fiber source in the world. The genetic potential of cotton can be successfully and efficiently exploited by identifying and solving the complex fundamental problems of systematics, evolution, and phylogeny, based on interspecific hybridization of cotton. This study describes the results of interspecific hybridization of G. herbaceum L. (A1-genome) and G. mustelinum Miers ex Watt (AD4-genome) species, obtaining fertile hybrids through synthetic polyploidization of otherwise sterile triploid forms with colchicine (C22H25NO6) treatment. The fertile F1C hybrids were produced from five different cross combinations: (1) G. herbaceum subsp. frutescens × G. mustelinum; (2) G. herbaceum subsp. pseudoarboreum × G. mustelinum; (3) G. herbaceum subsp. pseudoarboreum f. harga × G. mustelinum; (4) G. herbaceum subsp. africanum × G. mustelinum; (5) G. herbaceum subsp. euherbaceum (variety A-833) × G. mustelinum. Cytogenetic analysis discovered normal conjugation of bivalent chromosomes in addition to univalent, open, and closed ring-shaped quadrivalent chromosomes at the stage of metaphase I in the F1C and F2C hybrids. The setting of hybrid bolls obtained as a result of these crosses ranged from 13.8-92.2%, the fertility of seeds in hybrid bolls from 9.7-16.3%, and the pollen viability rates from 36.6-63.8%. Two transgressive plants with long fiber of 35.1-37.0 mm and one plant with extra-long fiber of 39.1-41.0 mm were identified in the F2C progeny of G. herbaceum subsp. frutescens × G. mustelinum cross. Phylogenetic analysis with 72 SSR markers that detect genomic changes showed that tetraploid hybrids derived from the G. herbaceum × G. mustelinum were closer to the species G. mustelinum. The G. herbaceum subsp. frutescens was closer to the cultivated form, and its subsp. africanum was closer to the wild form. New knowledge of the interspecific hybridization and synthetic polyploidization was developed for understanding the genetic mechanisms of the evolution of tetraploid cotton during speciation. The synthetic polyploids of cotton obtained in this study would provide beneficial genes for developing new cotton varieties of the G. hirsutum species, with high-quality cotton fiber and strong tolerance to biotic or abiotic stress. In particular, the introduction of these polyploids to conventional and molecular breeding can serve as a bridge of transferring valuable genes related to high-quality fiber and stress tolerance from different cotton species to the new cultivars.

2.
Plants (Basel) ; 11(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36432741

RESUMO

Cotton genus Gossypium L., especially its wild species, is rich in genetic diversity. However, this valuable genetic resource is barely used in cotton breeding programs. In part, due to photoperiod sensitivities, the genetic diversity of Gossypium remains largely untapped. Herein, we present a genetic analysis of morphological, cytological, and genomic changes from radiation-mediated mutagenesis that induced plant photoperiod insensitivity in the wild cotton of Gossypium hirsutum. Several morphological and agronomical traits were found to be highly inheritable using the progeny between the wild-type G. hirsutum subsp. purpurascens (El-Salvador) and its mutant line (Kupaysin). An analysis of pollen mother cells (PMCs) revealed quadrivalents that had an open ring shape and an adjoining type of divergence of chromosomes from translocation complexes. Using 336 SSR markers and 157 F2 progenies that were grown with parental genotypes and F1 hybrids in long day and short night conditions, five quantitative trait loci (QTLs) associated with cotton flowering were located on chromosomes At-05, At-11, and Dt-07. Nineteen candidate genes related to the flowering traits were suggested through molecular and in silico analysis. The DNA markers associated with the candidate genes, upon future functional analysis, would provide useful tools in marker-assisted selection (MAS) in cotton breeding programs for early flowering and maturity.

3.
Front Plant Sci ; 12: 779386, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975965

RESUMO

Cotton genetic resources contain diverse economically important traits that can be used widely in breeding approaches to create of high-yielding elite cultivars with superior fiber quality and adapted to biotic and abiotic stresses. Nevertheless, the creation of new cultivars using conventional breeding methods is limited by the cost and proved to be time consuming process, also requires a space to make field observations and measurements. Decoding genomes of cotton species greatly facilitated generating large-scale high-throughput DNA markers and identification of QTLs that allows confirmation of candidate genes, and use them in marker-assisted selection (MAS)-based breeding programs. With the advances of quantitative trait loci (QTL) mapping and genome-wide-association study approaches, DNA markers associated with valuable traits significantly accelerate breeding processes by replacing the selection with a phenotype to the selection at the DNA or gene level. In this review, we discuss the evolution and genetic diversity of cotton Gossypium genus, molecular markers and their types, genetic mapping and QTL analysis, application, and perspectives of MAS-based approaches in cotton breeding.

4.
PLoS One ; 12(10): e0186240, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29016665

RESUMO

Most wild and semi-wild species of the genus Gossypium are exhibit photoperiod-sensitive flowering. The wild germplasm cotton is a valuable source of genes for genetic improvement of modern cotton cultivars. A bi-parental cotton population segregating for photoperiodic flowering was developed by crossing a photoperiod insensitive irradiation mutant line with its pre-mutagenesis photoperiodic wild-type G. darwinii Watt genotype. Individuals from the F2 and F3 generations were grown with their parental lines and F1 hybrid progeny in the long day and short night summer condition (natural day-length) of Uzbekistan to evaluate photoperiod sensitivity, i.e., flowering-time during the seasons 2008-2009. Through genotyping the individuals of this bi-parental population segregating for flowering-time, linkage maps were constructed using 212 simple-sequence repeat (SSR) and three cleaved amplified polymorphic sequence (CAPS) markers. Six QTLs directly associated with flowering-time and photoperiodic flowering were discovered in the F2 population, whereas eight QTLs were identified in the F3 population. Two QTLs controlling photoperiodic flowering and duration of flowering were common in both populations. In silico annotations of the flanking DNA sequences of mapped SSRs from sequenced cotton (G. hirsutum L.) genome database has identified several potential 'candidate' genes that are known to be associated with regulation of flowering characteristics of plants. The outcome of this research will expand our understanding of the genetic and molecular mechanisms of photoperiodic flowering. Identified markers should be useful for marker-assisted selection in cotton breeding to improve early flowering characteristics.


Assuntos
Flores/genética , Estudos de Associação Genética , Gossypium/genética , Locos de Características Quantitativas/genética , Cruzamento , Flores/crescimento & desenvolvimento , Genoma de Planta , Genótipo , Gossypium/crescimento & desenvolvimento , Humanos , Repetições de Microssatélites/genética , Fotoperíodo , Reprodução , Têxteis , Uzbequistão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...