Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 364: 128006, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36155815

RESUMO

The effect of pretreatment technologies and reactor types on conversion efficiency and operating costs of anaerobic co-digestion of food waste and sewage sludge were investigated by 300-day continuous experiments. The volatile solids (VS) removal efficiency increased from 61% to 77% with the application of co-hydrothermal pretreatment of sewage sludge and biogas residue. Deep dewatering reduced the volume of hydrothermally pretreated biogas residue by 85%. When continuous stirred tank reactors (CSTRs) were converted to anaerobic sequencing batch reactors (ASBRs), vS removal efficiencies increased by 6%, attributed to a 1.4-1.6-fold increase in solids retention time (SRT). The bottom drainage of mineralized sludge every 40 days increased ASBR stability. Firmicutes and Methanosphaera dominated the bacterial and archaeal communities, respectively. Operating costs decreased by 14.9 US$/metric ton feedstock by applying ASBRs. Compared to CSTRs, ASBRs achieved higher organic matter conversion efficiency, smaller volume of biogas residue, and lower operating costs.

2.
J Hazard Mater ; 435: 128901, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35500337

RESUMO

Antibiotics and antibiotic resistance genes (ARGs) are enriched in antibiotic fermentation residues (AFRs). In this study, we investigated the effect of hydrothermal treatment on dewatering, biogas production, and removal of ARGs in the penicillin fermentation residue (PFR). Solid, 120 µm particles in the PFR were disintegrated to 30 - 40 µm after 140 - 180 °C hydrothermal range. Of extracellular polymeric substance, 79.8 ± 0.4% was decomposed to release 82.2 ± 0.6% of bound water at 180 °C. The effective solid-liquid separation was achieved only after a hydrothermal treatment of 180 °C. More than 75% of organic matter in the filtrate was transformed into biogas by the upflow anaerobic sludge blanket (UASB). The absolute abundance of 16 S rRNA and ARGs decreased by 2.4 - 5.2 logs after hydrothermal treatment. The ratio of extracellular ARGs (eARGs) to total ARGs increased at 80 °C and decreased at higher temperature (>120 °C). The absolute abundance of ARGs increased by 0.7 - 1.6 logs in anaerobic digestion, and the relative abundances of ARGs based on 16 S rRNA plummeted by 3 logs. Most (98.7 ± 0.4%) ARGs were distributed in suspended solids and were removed by membrane filtration. Hydrothermal treatment demonstrated broad applicability to 10 varieties of AFRs.


Assuntos
Antibacterianos , Biocombustíveis , Anaerobiose , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Matriz Extracelular de Substâncias Poliméricas , Fermentação , Genes Bacterianos , Esgotos , Águas Residuárias
3.
Bioresour Technol ; 337: 125413, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34175766

RESUMO

A process combining hydrothermal treatment (HT), pyrolysis, and anaerobic digestion can efficiently treat antibiotic fermentation residues (AFR). The process characteristics and antibiotic resistance genes (ARGs) removal efficiencies of each unit have been investigated. HT of 180 °C improved the biodegradability and dewaterability of the AFR. Pyrolysis of 500 °C and upflow anaerobic sludge blanket (UASB) of 6.5 ± 0.5 kg COD•(m3•d)-1 recovered the organic matter in filter cake and filtrate of AFR. The biogas and pyrolysis gas can compensate the energy this system needs. HT of 180 °C could reduce 16S rRNA, ARGs, and mobile genetic elements (MGEs) by 2.3 to 7.4 logs. UASB increased the copy numbers of ARGs and MGEs, but the relative abundances of ARGs normalized against 16S rRNA were significantly declined. The ARGs and MGEs were enriched in suspended solids of digestate. The application of this process can promote the resources recycling of fermentation waste.


Assuntos
Antibacterianos , Pirólise , Anaerobiose , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Fermentação , Genes Bacterianos/genética , RNA Ribossômico 16S/genética , Esgotos
4.
Sci Total Environ ; 739: 139518, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32534306

RESUMO

Research has focused on the impacts of polycyclic aromatic hydrocarbons (PAHs) in the atmosphere due to their potential carcinogenicity. In this study, we investigated the seasonal variation, sources, incremental lifetime cancer risks (ILCRS), and vitro DNA oxidative damage of PAHs in Urumqi in NW China. A total of 72 atmospheric samples from Urumqi were collected over a year (September 2017-September 2018) and were analyzed for 16 PAHs that are specifically prioritized by the U.S Environmental Protection Agency (U·S EPA). The highest PAHs concentrations were in winter (1032.66 ng m-3) and lowest in spring (146.00 ng m-3). Middle molecular weight PAHs with four rings were the most abundant species (45.28-61.19% of the total). The results of the diagnostic ratio and positive matrix factorization inferred that the major sources of atmospheric PAHs in Urumqi were biomass burning, coking, and petrogenic sources (52.9%), traffic (30.1%), coal combustion (8.9%), and the plastics recycling industry (8.1%). ILCRS assessment and Monte Carlo simulations suggested that for all age groups PAHs cancer risks were mainly associated with ingestion and dermal contact and inhalation was negligible. The plasmid scission assay results showed a positive dose-response relationship between PAHs concentrations and DNA damage rates, demonstrating that toxic PAHs was the primary cause for PM2.5-induced DNA damage in the air of Urumqi.


Assuntos
Poluentes Atmosféricos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , China , DNA , Dano ao DNA , Monitoramento Ambiental , Estresse Oxidativo , Material Particulado/análise , Medição de Risco , Estações do Ano
5.
Environ Sci Pollut Res Int ; 25(23): 22629-22640, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29846897

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are of considerable concern due to their potential as human carcinogens. Thus, determining the characteristics, potential source, and examining the oxidative capacity of PAHs to protect human health is essential. This study investigated the PM2.5-bound PAHs at Dushanzi, a large petrochemical region in Xinjiang as well as northwest China. A total of 33 PM2.5 samples with 13 PAHs, together with molecular tracers (levoglucosan, and element carbon), were analyzed during the non-heating and heating periods. The results showed that the PM2.5 concentrations were 70.22 ± 22.30 and 95.47 ± 61.73 µg/m3, while that of total PAHs were 4.07 ± 2.03 and 60.33 ± 30.80 ng/m3 in sampling period, respectively. The fluoranthene, pyrene, chrysene, benzo[b]fluoranthene, and benzo[k]fluoranthene were the most abundant (top five) PAHs, accounting for 71.74 and 72.80% of total PAH mass during non-heating and heating periods. The BaP equivalent (BaPeq) concentration exceeded 1 ng/m3 as recommended by National Ambient Air Quality Standards during heating period. The diagnostic ratios and positive matrix factorization indicated that oil industry, biomass burning, coal combustion, and vehicle emissions are the primary sources. The coal combustion remarkably increased during heating period. The plasmid scission assay (PSA) results showed that higher DNA damage rate was observed during heating period. PAHs in PM2.5 such as Chr, BaP, and IcdP were found to have significantly positive correlations with the plasmid DNA damage rates. Additionally, the relationship among BaPeq and DNA damage rate suggested that synergistic reaction may modify the toxicity of PAHs.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Monitoramento Ambiental , Material Particulado/efeitos adversos , Hidrocarbonetos Policíclicos Aromáticos/efeitos adversos , Poluentes Atmosféricos/análise , China , Humanos , Estresse Oxidativo , Tamanho da Partícula , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA